Revision Checklist :4.3 Quantitative Chemistry

Conservation of mass

The law of conservation of mass states that no atoms are lost or made during a chemical reaction so the mass of the products equals the mass of the reactants.

This means that chemical reactions can be represented by symbol equations which are balanced in terms of the numbers of atoms of each element involved on both sides of the equation.

Balancing equations

- know how to balance chemical equations
$\mathrm{CaCO}_{3}+\mathbf{2 ~ H C l} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ (The 2 is put in front of the HCl to balance the
numbers of H 's and $\mathrm{Cl's}^{2}$ on both sides)
$\mathbf{2 ~ M g}+\mathrm{O}_{2} \rightarrow \mathbf{2} \mathrm{MgO}$ (The 2 is put in front of the MgO to balance with the 2 O 's on the left
and then a 2 needs to be put in front of the Mg to balance with the 2 Mg 's on the right.)
- Remember when balancing equations you cannot change the formulae

Relative formula mass

The relative formula mass (Mr) of a compound is the sum of the relative atomic masses (Ar) of the atoms in the numbers shown in the formula.

Be able to work out the relative formula mass (Mr) of a substance using data from the periodic table. e.g. the Mr of $\mathrm{CaCO}_{3}=40+12+(16 \times 3)=100$

Balanced chemical equations

In a balanced chemical equation, the sum of the relative formula masses of the reactants in the quantities shown equals the sum of the relative formula masses of the products in the quantities shown.

Mass changes when a reactant or product is a gas

Some reactions may appear to involve a change in mass but this can usually be explained because a reactant or product is a gas and its mass has not been taken into account.

When a metal reacts with oxygen the mass of the oxide produced is greater than the mass of the metal.
$2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$

In thermal decompositions of metal carbonates, carbon dioxide is produced which escapes into the atmosphere leaving the metal oxide as the only solid product.
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}$ (g)

Chemical measurements : uncertainty

Whenever a measurement is made there is always some uncertainty about the result obtained.

The range of a set of measurements about the mean can be used as a measure of uncertainty.

Example: Calculate the mean and uncertainty of the following volumes in cm^{3} : 20.10, 20.20, 20.00, 20.05, 20.15 Mean $=(20.10+20.20+20.00+20.05+20.15) / 5=20.10 \mathrm{~cm}^{3}$ Uncertainty $= \pm 0.10 \mathrm{~cm}^{3}$ (all readings are within ± 0.10 of mean) The uncertainty might be written as $20.10 \mathrm{~cm}^{3} \pm 0.10 \mathrm{~cm}^{3}$

Moles

Chemical amounts are measured in moles. The symbol for the unit mole is mol.

The mass of one mole of a substance in grams is numerically equal to its relative formula mass.

One mole of a substance contains the same number of the stated particles, atoms, molecules or ions as one mole of any other substance.
For example in one mole of carbon (C) the number of atoms is the same as the number of molecules in one mole of carbon dioxide $\left(\mathrm{CO}_{2}\right)$.

The number of atoms, molecules or ions in a mole of a given substance is the Avogadro constant.
The value of the Avogadro constant is 6.02×10^{23} per mole.
be able to work out the number of moles of a given substance from its mass using the equation
moles $=$ mass/Mr or rearranged to mass $=\mathbf{M r} \mathbf{x}$ moles

Example 1: Calculate the number of moles in 35.0 g of CuSO_{4}

$$
\begin{aligned}
\text { moles } & =\mathrm{mass} / \mathrm{Mr} \\
& =35.0 /(63.5+32+16 \times 4) \\
& =0.219 \mathrm{~mol}
\end{aligned}
$$

Many questions will involve changes of units
$1000 \mathrm{mg}=1 \mathrm{~g}$
$1000 \mathrm{~g}=1 \mathrm{~kg}$
$1000 \mathrm{~kg}=1$ tonne

Example 2: Calculate the number of moles in 75.0 mg of $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
\text { moles } & =\mathrm{mass} / M r \\
& =0.075 /(40+32+16 \times 4+18 \times 2) \\
& =4.36 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

Calculate the percentage by mass of an element in a compound

```
percentage by mass = number of atoms of element \times Ar of element }\times10
Mr of compound
```

Example 3. Calculate the percentage by mass of oxygen in calcium sulfate $\left(\mathrm{CaSO}_{4}\right)$
percentage by mass $=\frac{\text { number of atoms of element } \times \operatorname{Ar} \text { of element }}{M r \text { of compound }} \times 100$

$$
\begin{aligned}
& =\frac{4 \times 16}{(40+32+16 \times 4)} \times 100 \\
& =47 \%
\end{aligned}
$$

Avogadro's Constant

The number of atoms, molecules or ions in a mole of a given substance is the Avogadro constant. The value of the Avogadro constant is 6.02×10^{23} per mole.

Avogadro's Constant can be used for atoms, molecules and ions

1 mole of copper atoms will contain 6.02×10^{23} atoms
1 mole of carbon dioxide molecules will contain 6.02×10^{23} molecules
1 mole of sodium ions will contain 6.02×10^{23} ions

No of particles = number of moles \mathbf{x} Avogadro's constant

Example 4 : Calculate the number of tin atoms in a 6.00 g sample of tin metal.

Step 1 calculate the number of moles
moles $=$ mass $/ \mathrm{Ar}$

$$
\begin{aligned}
& =6 / 119 \\
& =0.0504 \mathrm{~mol}
\end{aligned}
$$

Step 2 use Avogadro's number to calculate no of atoms
Number of atoms $=$ moles $\times 6.02 \times 10^{23}$

$$
=0.0504 \times 6.02 \times 10^{23}
$$

$$
=3.04 \times 10^{22}
$$

Example 5 : Calculate the number of chloride ions in a 9.50 g of magnesium chloride ($\mathrm{Mr}=95$).
Step 1 calculate the number of moles of MgCl_{2}
moles $=$ mass $/ \mathrm{Mr}$

$$
\begin{aligned}
& =9.5 / 95 \\
& =0.1 \mathrm{~mol}
\end{aligned}
$$

Step 2: Deduce moles of Cl^{-}ions $=2 \mathrm{x}$ moles of MgCl_{2} Number of ions $=$ moles $\times 6.02 \times 10^{23}$

$$
=0.2 \times 6.02 \times 10^{23}
$$

$$
=0.2
$$

Example 6 : Calculate the mass of 1 atom of sodium
Mass of 1 atom = mass of 1 mole of sodium(Ar)/Avogadro's number

$$
\begin{aligned}
& =23 / 6.02 \times 10^{23} \\
& =3.82 \times 10^{-23} \mathrm{~g}
\end{aligned}
$$

Reacting mass questions

The masses of reactants and products can be calculated from balanced symbol equations.

Chemical equations can be interpreted in terms of moles. For example:
$\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
shows that one mole of magnesium reacts with two moles of hydrochloric acid to produce one mole of magnesium chloride and one mole of hydrogen gas.

General method for reacting mass questions

step 1: work out the number of moles of the substance for which the mass has been given.

$$
\text { Using number of moles }=\frac{\text { mass }}{M r}
$$

step2: use the ratios of moles in the balanced equation to work out the moles of the other substance

Step 3: work out the mass of the second substance
Using mass $=$ moles $\times M r$

Example 7: Calculate the mass of carbon dioxide produced from heating 5.5 g of sodium hydrogencarbonate.
$2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Step 1: work out moles of sodium hydrogencarbonate
moles $=$ mass $/ \mathrm{Mr}$

$$
=5.5 / 84
$$

$$
=0.0655 \mathrm{~mol}
$$

Step 2: use balanced equation to give moles of CO_{2} Step 3: work out mass of CO_{2}
2 moles $\mathrm{NaHCO}_{3}: 1$ moles CO_{2}
Mass $=$ moles $\times \mathrm{Mr}$
So $0.0655 \mathrm{HNO}_{3}: 0.0328$ moles CO_{2}
$=0.0328 \times 44$
$=1.44 \mathrm{~g}$

Working out the balancing numbers from masses

The balancing numbers in a symbol equation can be calculated from the masses of reactants and products by converting the masses in grams to amounts in moles and converting the numbers of moles to simple whole number ratios.

Example 8. A sample of lead was heated strongly in oxygen. It was found that 8.28 g of lead reacts with 0.64 g of oxygen to form a lead oxide.

There are two possible lead oxides that could be formed: lead (II) oxide (PbO) and lead (IV) oxide $\left(\mathrm{PbO}_{2}\right)$ Determine which is the correct equation.

$$
\begin{array}{ll}
\text { Equation } 1 & 2 \mathrm{~Pb}+\mathrm{O}_{2} \rightarrow 2 \mathrm{PbO} \\
\text { Equation } 2 & \mathrm{~Pb}+\mathrm{O}_{2} \rightarrow \mathrm{PbO}_{2}
\end{array}
$$

Step 1: calculate moles of each chemical whose mass if given
Moles of $\mathrm{Pb}=$ mass $/ \mathrm{Ar}$

$$
\begin{aligned}
& =8.28 / 207 \\
& =0.04 \mathrm{~mol}
\end{aligned}
$$

$$
\text { Moles of } \mathrm{O}_{2}=\text { mass } / \mathrm{Mr}
$$

$$
=0.64 / 32
$$

$$
=0.02 \mathrm{~mol}
$$

Step 2: divide each moles in step 1 by the smallest number of moles to get a whole number ratio

$$
\begin{aligned}
\mathrm{Pb} & =0.04 / 0.02 & \mathrm{O}_{2} & =0.02 / 0.02 \\
& =2 & & =1
\end{aligned}
$$

Step 3: choose the correct balanced equation:

$$
2 \mathrm{~Pb}+\mathrm{O}_{2} \rightarrow 2 \mathrm{PbO}
$$

The whole number ratio in step 2 is the same as the balancing numbers in equation 1

Limiting Reactant

In a chemical reaction involving two reactants, it is common to use an excess of one of the reactants to ensure that all of the other reactant is used.

The reactant that is completely used up is called the limiting reactant because it limits the amount of products.
The number of moles of the limiting reactant will determine the number of moles of product formed.
Not all of the excess reactant will react

General method for limiting reactant questions

step 1: calculate the number of moles of the substance for each reactant.

$$
\text { Using number of moles }=\frac{\text { mass }}{M r}
$$

step2 : use the ratios of moles in the balanced equation to work out which reactant is the limiting reactant
Step 3 : use the ratios of moles in the balanced equation to convert the moles of the limiting reactant to the moles of a product

Step 4: calculate the mass of the product
Using mass $=$ moles $\times \mathrm{Mr}$

Some questions may only ask you to calculate which reactant is in excess. In those questions only do the first two steps in the above method.

Example 9: 5.0 g of magnesium are reacted with 6.0 g of oxygen to make magnesium oxide. What is the limiting reactant and calculate the mass of magnesium oxide that will be formed?
$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
step 1: calculate the number of moles of the substance for each reactant.

$$
\begin{aligned}
\text { Work out moles of } \mathrm{Mg} & \begin{aligned}
& \text { Work out moles of } \mathrm{O}_{2} \\
& \text { Moles }=\text { mass } / \mathrm{Ar} \\
&=5 / 24
\end{aligned} & \text { Moles } & =\text { mass } / \mathrm{Mr} \\
& =0.208 \mathrm{~mol} & & =6 / 32
\end{aligned}
$$

step2: use the ratios of moles in the balanced equation to work out which reactant is the limiting reactant Using ratio of $2 \mathrm{Mg}: 1 \mathrm{O}_{2}$ from balanced equation:
0.208 moles of Mg should react with 0.104 of O_{2}
but we have 0.188 mol of O_{2} so O_{2} is in excess and Mg is limiting reactant
step 3 : use the ratios of moles in the balanced equation to convert the moles of the limiting reactant to the moles of a product

Ignore excess moles of O_{2} and use moles of Mg to work out moles of MgO
There are 0.208 mol of Mg , so using ratio of $2 \mathrm{Mg}: 2 \mathrm{MgO}$ from balanced equation there must be 0.208 mol of MgO

step 4: calculate the mass of the product

$$
\begin{aligned}
\text { Mass } & =\text { moles } \times \mathrm{Mr} \text { of } \mathrm{MgO} \\
& =0.208 \times 40 \\
& =8.32 \mathrm{~g}
\end{aligned}
$$

Concentration calculations

The concentration of a solution can be measured in $\mathrm{g} / \mathrm{dm}^{3}$ or $\mathrm{mol} / \mathrm{dm}^{3}$.

Concentration(in $\mathrm{mol} / \mathrm{dm}^{3}$) $=$ moles/volume $\left(\right.$ in $\left.\mathrm{dm}^{3}\right)$
Concentration(in g/dm ${ }^{3}$) $=$ mass (in g) /volume (in dm ${ }^{3}$)

The volume in the above equation must be in $\mathbf{d m}^{3}$. Volumes are often given in cm^{3}. To convert cm^{3} into dm^{3} divide by 1000

Example 10: Calculate the concentration of a solution in $\mathrm{g} / \mathrm{dm}^{3}$ made by dissolving 500 mg of NaNO_{3} in $250 \mathrm{~cm}^{3}$ water.
Convert units $500 \mathrm{mg}=0.50 \mathrm{~g}$
$250 \mathrm{~cm}^{3}=0.25 \mathrm{dm}^{3}$
Conc in $\mathrm{g} / \mathrm{dm}^{3}=$ mass/volume

$$
\begin{aligned}
& =0.50 / 0.25 \\
& =2.0 \mathrm{~g} / \mathrm{dm}^{3}
\end{aligned}
$$

Example 11: Calculate the concentration in $\mathrm{mol} / \mathrm{dm}^{3}$ of a solution made by dissolving $5.00 \mathrm{~g}^{\text {of }} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in $250 \mathrm{~cm}^{3}$ water.

$$
\begin{aligned}
\text { moles } & =\mathrm{mass} / \mathrm{Mr} \\
& =5.00 /(23 \times 2+12+16 \times 3) \\
& =0.0472 \mathrm{~mol} \\
\text { conc }= & \mathrm{moles} / \text { volume } \\
& =0.0472 / 0.25 \\
& =0.189 \mathrm{~mol} / \mathrm{dm}^{3}
\end{aligned}
$$

Example 12 Calculate the mass of sodium chloride needed to make $100 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{NaCl}$ solution.

$$
\begin{aligned}
\text { moles } & =\text { conc } \times \text { volume } \\
& =0.1 \times 0.1 \\
& =0.01 \mathrm{~mol} \\
\text { mass } & =\mathrm{mol} \times \mathrm{Mr} \\
& =0.01 \times(23+35.5) \\
& =0.585 \mathrm{~g}
\end{aligned}
$$

To convert a concentration in $\mathbf{g} / \mathrm{dm}^{3}$ to $\mathrm{mol} / \mathrm{dm}^{3}$ divide by $\mathbf{M r}$
Example 13: A solution of HCl has a concentration of $1.825 \mathrm{~g} / \mathrm{dm}^{3}$. Calculate the concentration of the solution in $\mathrm{mol} / \mathrm{dm}^{3}$

Conc in $\mathrm{mol} / \mathrm{dm}^{3}=$ conc in $\mathrm{g} / \mathrm{dm}^{3} / \mathrm{Mr}$

$$
\begin{aligned}
& =1.825 / 36.5 \\
& =0.05 \mathrm{~mol} / \mathrm{dm}^{3}
\end{aligned}
$$

Required practical :Titrations

Chemistry only

The volumes of acid and alkali solutions that react with each other can be measured by titration using a suitable indicator.
If the volumes of two solutions that react completely are known and the concentration of one solution is known, the concentration of the other solution can be calculated.

A pipette measures one fixed volume accurately. A burette measures variable volume

Know the basic method for doing a titration

- alkali in burette
- acid in conical flask measured out with a $25 \mathrm{~cm}^{3}$ pipette
- few drops of indicator
- add alkali to acid until colour changes
- swirl conical flask
- add alkali dropwise towards the end
- note final burette reading
- repeat until two readings are within $0.1 \mathrm{~cm}^{3}$

Common indicator: Phenolphthalein
Colour in acid: colourless Colour in alkali: pink
Results within $0.10 \mathrm{~cm}^{3}$ of each other are called concordant

Titration number	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Initial burette reading $\left(\mathrm{cm}^{3}\right)$	0.50	2.50	1.55
Final burette reading $\left(\mathrm{cm}^{3}\right)$	24.50	27.00	25.95
Titre $\left(\mathrm{cm}^{3}\right)$	24.00	24.50	24.40

burette

Titration calculations

General method

Step 1: Calculate the number of moles of the substance for which the volume and concentration has been given.
Using number of moles $=$ concentration \mathbf{x} volume (in dm^{3})
Step 2 : Use the balanced equation to work out the moles of the other substance e.g. NaOH and HCl react on a 1:1 ratio $\left(\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}\right)$

Step 3: Calculate the concentration of the second substance
Using concentration $=$ moles $/$ volume

Example 14

$25 \mathrm{~cm}^{3}$ of HCl is reacted with $22.4 \mathrm{~cm}^{3}$ of $2 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{NaOH}$.
Calculate the concentration of the HCl .
step 1: work out the number of moles of NaOH
Number of moles $=$ conc \mathbf{x} vol $=2 \times 22.4 / 1000=0.0448 \mathrm{~mol}$
step2 :use the balanced equation to work out the moles of HCl
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
1 mole NaOH reacts with 1 mole HCl 1:1 ratio
So 0.0448 moles NaOH reacts with 0.0448 moles HCl
Step 3: calculate the conc of HCl
concentration $=$ moles $/$ volume

$$
\begin{aligned}
& =0.0448 /(25 / 1000) \\
& =1.79 \mathrm{~mol} / \mathrm{dm}^{3}
\end{aligned}
$$

Example 15

Calculate the volume of $0.1 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{HCl}$ needed to neutralise $25.0 \mathrm{~cm}^{3}$ of $0.14 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{NaOH}$.
step 1: work out the number of moles of NaOH
Number of moles $=$ conc x vol $=0.14 \times 25.0 / 1000=0.0035 \mathrm{~mol}$
step2 : use the balanced equation to work out the moles of HCl
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
1 mole NaOH reacts with 1 mole HCl 1:1 ratio
So 0.0035 moles NaOH reacts with 0.0035 moles HCl
Step 3: calculate the volume of HCl volume= moles / concentration

$$
\begin{aligned}
& =0.0035 / 0.1 \\
& =0.035 \mathrm{dm}^{3} \text { or } 35 \mathrm{~cm}^{3}
\end{aligned}
$$

Percentage Yield

Even though no atoms are gained or lost in a chemical reaction, it is not always possible to obtain the calculated amount of a product because:

- the reaction may not go to completion because it is reversible
- some of the product may be lost when it is separated from the reaction mixture
- some of the reactants may react in ways different to the expected reaction.

The amount of a product obtained is known as the yield. When compared with the maximum theoretical amount as a percentage, it is called the percentage yield.
$\%$ Yield $=$ mass of product actually made $\times 100$ maximum theoretical mass of product

Example 16: 25.0 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ was reacted and it produced 10.0 g of Fe . Calculate the percentage yield.
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
First calculate maximum theoretical mass of Fe that could be produced.

Step 1: work out moles of iron oxide
Moles = mass $/ \mathrm{Mr}$
$=25.0 / 160$
$=0.156 \mathrm{~mol}$

Step 3: calculate maximum mass of Fe
Mass $=$ moles $\times \mathrm{Ar}$

$$
\begin{aligned}
& =0.313 \times 56 \\
& =17.5 \mathrm{~g}
\end{aligned}
$$

Step 2: use balanced equation to give moles of Fe
1 moles $\mathrm{Fe}_{2} \mathrm{O}_{3}: 2$ moles Fe
So $0.156 \mathrm{Fe}_{2} \mathrm{O}_{3}: 0.313 \mathrm{moles} \mathrm{Fe}$

Step 4: calculate the percentage yield

$$
\begin{aligned}
\% \text { Yield }= & \frac{\text { mass of product actually made }}{\text { maximum theoretical mass of product }} \times 100 \\
& =(10 / 17.5) \times 100 \\
& =57.1 \%
\end{aligned}
$$

Percentage atom economy

The atom economy (atom utilisation) is a measure of the amount of starting materials that end up as useful products. It is important for sustainable development and for economic reasons to use reactions with high atom economy.

$$
\begin{array}{ll}
\text { Percentage atom } \\
\text { economy }= & \frac{\text { Relative formula mass of desired product from equation }}{\text { Sum of relative formula masses of all reactants from equation }} \times 100
\end{array}
$$

Example 17: Calculate the \% atom economy for the following reaction where Fe is the desired product assuming the reaction goes to completion.

$$
\begin{aligned}
& \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2} \\
& \% \text { atom economy }= \\
& \begin{aligned}
&(2 \times 56+3 \times 16)+3 \times(12+16) \\
&=45.9 \%
\end{aligned}
\end{aligned}
$$

Equal amounts in moles of gases occupy the same volume under the same conditions of temperature and pressure.

The volume of one mole of any gas at room temperature and pressure ($20^{\circ} \mathrm{C}$ and 1 atmosphere pressure) is $24 \mathrm{dm}^{3}$.

This equation gives the volume of a gas at room pressure (1 atm) and room temperature $20^{\circ} \mathrm{C}$.

Example 18 : Calculate the volume in dm^{3} at room temperature and pressure of 50.0 g of carbon dioxide gas.

Step 1 convert mass to moles	Step 2 convert moles to gas volume
moles $=$ mass $/ \mathrm{Mr}$	Gas volume (dm^{3}) $=$ moles $\times 24$
$=50 /(12+16 \times 2)$	$=1.136 \times 24$
$=1.136 \mathrm{~mol}$	$=$ or $27.3 \mathrm{dm}^{3}$ to 3 sig fig

Example 19 : Calculate the mass of $500 \mathrm{~cm}^{3}$ of chlorine gas $\left(\mathrm{Cl}_{2}\right)$ at room temperature and pressure.
Step 1 convert volume to dm^{3}

$$
500 / 1000=0.5 \mathrm{dm}^{3}
$$

Step 2 convert gas volume to moles
Step 3 convert mole to mass
moles $=$ gas volume $\left(\mathrm{dm}^{3}\right) / 24$

$$
\begin{aligned}
\text { mass }= & \text { moles } \times \mathrm{Mr} \\
= & 0.0208 \times(35.5 \times 2) \\
= & 1.48 \mathrm{~g} \text { to } 3 \mathrm{sig} \mathrm{fig}
\end{aligned}
$$

$$
=0.0208 \mathrm{~mol} \text { to } 3 \mathrm{sig} \text { fig }
$$

Volumes of gases reacting in a balanced equation can also be calculated by simple mole ratio
Example 20 If $500 \mathrm{~cm}^{3}$ of methane is burnt at room temperature and pressure, what volume of oxygen would be needed and what volume of CO_{2} would be given off under the same conditions?

Simply multiply gas volume $\times 2$ as 1:2 ratio in balanced equation

Combining equations

1. For pure solids and gases

Unit of mass: grams
Unit of moles: mol

2. For solutions

3. For gases

Gas volume $\left(\mathrm{dm}^{3}\right)=$ moles $\times 24$
nit of concentration: $\mathrm{mol} / \mathrm{dm}^{3}$
Unit of volume: $\mathbf{d m}^{\mathbf{3}}$
Remember to convert cm^{3} into dm^{3}
More complicated questions may require use of more than one of the above equations.
e.g. what mass of one substance may react with a volume and concentration of a solution

Step 1:

Use one of the above 3 equations to convert any given quantity into moles Mass \rightarrow moles
Volume of gas \rightarrow moles
Conc and volume of solution \rightarrow moles

Step 2:

Use balanced equation to convert moles of initial substance into moles of second substance

Step 3
Convert moles of second substance into quantity question asked for using relevant equation e.g. Moles, $\mathrm{Mr} \rightarrow$ mass Mole gas \rightarrow volume gas Moles, vol solution \rightarrow conc

Example 21

Calculate the mass of calcium that would react with $25.0 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} / \mathrm{dm}^{3}$ of hydrochloric acid.
step 1: Calculate the number of moles of HCl
Number of moles $=$ conc \mathbf{x} vol $=2 \times 25 / 1000=0.050 \mathrm{~mol}$
step2 :Use the balanced equation to work out the moles of Ca $\mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}$
2 mole HCl reacts with 1 mole Ca 2:1 ratio
So 0.05 mol HCl reacts with 0.025 mol Ca
Step 3: Calculate the mass of Ca
Mass $=$ moles $\times \mathrm{Mr}$
$=0.025 \times 40$
$=1.0 \mathrm{~g}$

Example 22

Calculate the volume in dm^{3} of CO_{2} gas produced if 3.0 g of CaCO_{3} reacts with excess $\mathrm{H}_{2} \mathrm{SO}_{4}$
step 1: Calculate the number of moles of CaCO_{3}
Number of moles $=$ mass $/ \mathbf{M r}=3 / 100=0.030 \mathrm{~mol}$
step2 :Use the balanced equation to work out the moles of CO_{2}
$\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$1 \mathrm{~mole} \mathrm{CaCO}_{3}$ forms $1 \mathrm{~mole} \mathrm{CO}_{2}$ 1:1 ratio
So $0.030 \mathrm{~mol} \mathrm{CaCO}_{3}$ forms $0.030 \mathrm{~mol} \mathrm{CO}_{2}$
Step 3: Calculate the volume of CO_{2}
Gas volume $\left(\mathrm{dm}^{3}\right)=$ moles $\times 24$

$$
\begin{aligned}
& =0.030 \times 24 \\
& =0.72 \mathrm{dm}^{3}
\end{aligned}
$$

