1.2 Calculations

The mole is the key concept for chemical calculations.

DEFINITION: The mole is the amount of substance in grams that has the same number of particles as there are atoms in 12 grams of carbon-12.

Avogadro’s Number
There are 6.022×10^{23} atoms in 12 grams of carbon-12. Therefore explained in simpler terms 'One mole of any specified entity contains 6.022×10^{23} of that entity':

For most calculations at A-level we use the following 3 equations to calculate moles:

Learn these equations carefully and what units to use in them.

1. For pure solids, liquids and gases

\[
\text{moles} = \frac{\text{mass}}{\text{Mr}}
\]

Unit of Mass: grams
Unit of moles: mol

Remember the Mr must be calculated and quoted to 1dp

2. For gases

\[
PV = nRT
\]

Unit of Pressure (P): Pa
Unit of Volume (V): m³
Unit of Temp (T): K
n = moles
R = 8.31

Remember the M_r must be calculated and quoted to 1dp

3. For solutions

\[
\text{Concentration} = \frac{\text{moles}}{\text{volume}}
\]

Unit of concentration: mol dm⁻³ or M
Unit of Volume: dm³

Converting volumes

\[
\begin{align*}
\text{cm}³ & \rightarrow \text{dm}³ ÷ 1000 \\
\text{cm}³ & \rightarrow \text{m}³ ÷ 1000 000 \\
\text{dm}³ & \rightarrow \text{m}³ ÷ 1000
\end{align*}
\]

Using Equation 1

1. For pure solids, liquids and gases

\[
\text{moles} = \frac{\text{mass}}{\text{Mr}}
\]

Unit of mass: grams
Unit of moles: mol

Example 1: What is the number of moles in 35.0g of CuSO₄?

\[
\begin{align*}
\text{moles} &= \frac{\text{mass}}{\text{Mr}} \\
&= \frac{35.0}{(63.5 + 32.0 + 16.0 \times 4)} \\
&= 0.219 \text{ mol}
\end{align*}
\]

Molar Mass (Mr) for a compound can be calculated by adding up the mass numbers (from the periodic table) of each element in the compound

eg CaCO₃ = 40.1 + 12.0 +16.0 x3 = 100.1

Many questions will involve changes of units

1000 mg = 1g
1000 g = 1 kg
1000 kg = 1 tonne

Example 2: What is the number of moles in 75.0mg of CaSO₄·2H₂O?

\[
\begin{align*}
\text{moles} &= \frac{\text{mass}}{\text{Mr}} \\
&= \frac{0.075}{(40 + 32.0 +16.0 \times 4 + 18.0 \times 2)} \\
&= 4.36x10^{-4} \text{ mol}
\end{align*}
\]

Significant Figures

Give your answers to the same number of significant figures as the number of significant figures for the data you given in a question. If you are given a mixture of different significant figures, use the smallest.

N Goalby chemrevise.org
Avogadro’s Constant

The mole is the amount of substance in grams that has the same number of particles as there are atoms in 12 grams of carbon-12.

Avogadro’s Constant can be used for atoms, molecules and ions

<table>
<thead>
<tr>
<th>Composition</th>
<th>Number of particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mole of copper atoms will contain 6.022×10^{23} atoms</td>
<td></td>
</tr>
<tr>
<td>1 mole of carbon dioxide molecules will contain 6.022×10^{23} molecules</td>
<td></td>
</tr>
<tr>
<td>1 mole of sodium ions will contain 6.022×10^{23} ions</td>
<td></td>
</tr>
</tbody>
</table>

No of particles = moles of substance (in mol) X Avogadro’s constant

Example 3: How many atoms of Tin are there in a 6.00 g sample of Tin metal?

\[
\text{moles} = \frac{\text{mass}}{\text{Ar}} = \frac{6.00}{118.7} = 0.05055 \text{ mol}
\]

\[
\text{Number atoms} = \text{moles} \times 6.022 \times 10^{23} = 0.05055 \times 6.022 \times 10^{23} = 3.04 \times 10^{22}
\]

Example 4: How many chloride ions are there in a 25.0 cm3 of a solution of magnesium chloride of concentration 0.400 mol dm$^{-3}$?

\[
\text{moles} = \text{concentration} \times \text{Volume} = 0.400 \times 0.0250 = 0.0100 \text{ mol}
\]

\[
\text{moles of chloride ions} = 0.0100 \times 2 = 0.0200
\]

\[
\text{Number ions of Cl}^- = \text{moles} \times 6.022 \times 10^{23} = 0.0200 \times 6.022 \times 10^{23} = 1.20 \times 10^{22} \text{ (to 3 sig fig)}
\]

Density

Density calculations are usually used with pure liquids but to work out the mass from a measured volume. It can also be used with solids and gases.

\[\text{density} = \frac{\text{mass}}{\text{volume}}\]

Example 5: How many molecules of ethanol are there in a 0.500 dm3 of ethanol (CH$_3$CH$_2$OH) liquid? The density of ethanol is 0.789 g cm$^{-3}$

\[
\text{Mass} = \text{density} \times \text{volume}
\]

\[
= 0.789 \times 500
\]

\[
= 394.5 \text{g}
\]

\[
\text{moles} = \frac{\text{mass}}{\text{Mr}} = \frac{394.5}{46.0}
\]

\[
= 8.60 \text{ mol}
\]

\[
\text{Number of molecules} = \text{moles} \times 6.022 \times 10^{23}
\]

\[
= 8.60 \times 6.022 \times 10^{23}
\]

\[
= 5.16 \times 10^{24} \text{ (to 3 sig fig)}
\]

Example 6: There are 980 mol of pure gold in a bar measuring 10 cm by 20 cm by 50 cm. What is the density of gold in kg dm$^{-3}$?

\[
\text{Mass} = \text{moles} \times \text{Mr}
\]

\[
= 980 \times 197
\]

\[
= 193.06 \text{ kg}
\]

\[
\text{Volume} = 10 \times 20 \times 50
\]

\[
= 10000 \text{ cm}^3
\]

\[
= 10 \text{ dm}^3
\]

\[
\text{density} = \frac{\text{mass}}{\text{volume}}
\]

\[
= \frac{193}{10}
\]

\[
= 19.3 \text{ kg dm}^{-3}
\]
Empirical formulae

Definition: An empirical formula is the **simplest** ratio of atoms of each **element** in the compound.

General method

1. Divide each mass (or % mass) by the atomic mass of the element
2. For each of the answers from step 1 divide by the smallest one of those numbers.
3. Sometimes the numbers calculated in step 2 will need to be multiplied up to give whole numbers.

These whole numbers will be the empirical formula.

Example 7: Calculate the empirical formula for a compound that contains 1.82g of K, 5.93g of I and 2.24g of O

Step 1: Divide each mass by the atomic mass of the element to give moles

- \(K = \frac{1.82}{39.1} = 0.0465 \) mol
- \(I = \frac{5.93}{126.9} = 0.0467 \) mol
- \(O = \frac{2.24}{16} = 0.14 \) mol

Step 2: For each of the answers from step 1 divide by the smallest one of those numbers.

- \(K = \frac{0.0465}{0.0465} = 1 \)
- \(I = \frac{0.0467}{0.0465} = 1 \)
- \(O = \frac{0.14}{0.0465} = 3 \)

Empirical formula = KIO₃

Molecular formula from empirical formula

Definition: A molecular formula is the **actual** number of atoms of each element in the compound.

From the relative molecular mass (Mr) work out how many times the mass of the empirical formula fits into the Mr.

Example 8: work out the molecular formula for the compound with an empirical formula of C₃H₆O and a Mr of 116

C₃H₆O has a mass of 58
The empirical formula fits twice into Mr of 116
So molecular formula is C₆H₁₂O₂

The Mr does not need to be exact to turn an empirical formula into the molecular formula because the molecular formula will be a whole number multiple of the empirical formula.

Remember the Mr of a substance can be found out from using a mass spectrometer. The molecular ion (the peak with highest m/z) will be equal to the Mr.
The water of crystallisation in calcium sulfate crystals can be removed as water vapour by heating as shown in the following equation.

\[\text{CaSO}_4 \cdot x \text{H}_2\text{O}(s) \rightarrow \text{CaSO}_4(s) + x \text{H}_2\text{O}(g) \]

Method.

- Weigh an empty clean dry crucible and lid.
- Add 2g of hydrated calcium sulfate to the crucible and weigh again.
- Heat strongly with a Bunsen for a couple of minutes.
- Allow to cool.
- Weigh the crucible and contents again.
- Heat crucible again and reweigh until you reach a constant mass (do this to ensure reaction is complete).

Large amounts of the solid, such as 0.100 g, should not be used in this experiment as the percentage uncertainties in weighing will be too high.

The crucible needs to be dry otherwise a wet crucible would give an inaccurate result. It would cause mass loss to be too large as the water would be lost when heating.

Example 10. 3.51 g of hydrated zinc sulfate were heated and 1.97 g of anhydrous zinc sulfate were obtained. Calculate the value of the integer \(x \) in \(\text{ZnSO}_4 \cdot x \text{H}_2\text{O} \).

\[
\begin{align*}
\text{Calculate the mass of H}_2\text{O} & = 3.51 - 1.97 = 1.54 \text{g} \\
\text{Calculate moles of ZnSO}_4 & = \frac{1.97}{161.5} = 0.0122 \\
\text{Calculate moles of H}_2\text{O} & = \frac{1.54}{18} = 0.085 \\
\text{Calculate ratio of mole of ZnSO}_4 \text{ to H}_2\text{O} & = \frac{0.0122}{0.0122} = 1 \\
\text{Therefore } x & = 7
\end{align*}
\]
Concentration of Solutions

A solution is a mixture formed when a solute dissolves in a solvent. In chemistry we most commonly use water as the solvent to form aqueous solutions. The solute can be a solid, liquid or a gas.

Molar concentration can be measured for solutions. This is calculated by dividing the amount in moles of the solute by the volume of the solution. The volume is measured in dm3. The unit of molar concentration is mol dm$^{-3}$; it can also be called molar using symbol M.

$$\text{Concentration} = \frac{\text{moles}}{\text{volume}}$$

Unit of concentration: mol dm$^{-3}$ or M

Unit of Volume: dm3

Converting volumes

A m3 is equivalent to a cube 100cm x 100cm x 100cm = 10000000 cm3

A dm3 is equivalent to a cube 10cm x 10cm x 10cm = 1000 cm3

A cm3 is equivalent to a cube 1cm x 1cm x 1cm

1 m3 = 1000 dm3 or 1000 L

To convert m3 into dm3 multiply by 1000

1 dm3 = 1000 cm3 or 1000 mL

To convert cm3 into dm3 divide by 1000

Example 11 Calculate the concentration of solution made by dissolving 5.00 g of Na$_2$CO$_3$ in 250 cm3 water.

moles = \frac{\text{mass}}{\text{Mr}}

= \frac{5}{(23.0 \times 2 + 12 + 16 \times 3)}

= 0.0472 mol

conc = \frac{\text{moles}}{\text{volume}}

= \frac{0.0472}{0.25}

= 0.189 mol dm$^{-3}$

Example 12 Calculate the concentration of solution made by dissolving 10 kg of Na$_2$CO$_3$ in 0.50 m3 water.

moles = \frac{\text{mass}}{\text{Mr}}

= \frac{10000}{(23.0 \times 2 + 12 + 16 \times 3)}

= 94.2 mol

conc = \frac{\text{moles}}{\text{volume}}

= \frac{94.2}{500}

= 0.19 mol dm$^{-3}$
Mass Concentration

The concentration of a solution can also be measured in terms of mass of solute per volume of solution.

\[
\text{Mass Concentration} = \frac{\text{mass}}{\text{volume}}
\]

Unit of mass concentration: g dm\(^{-3}\)
Unit of Mass g
Unit of Volume: dm\(^3\)

Ions dissociating

When soluble ionic solids dissolve in water they will dissociate into separate ions. This can lead to the concentration of ions differing from the concentration of the solute.

Example 13

If 5.86g (0.1 mol) of sodium chloride (NaCl) is dissolved in 1 dm\(^3\) of water then the concentration of sodium chloride solution would be 0.1mol dm\(^{-3}\).

However the 0.1mol sodium chloride would split up to form 0.1 mol of sodium ions and 0.1 mol of chloride ions. The concentration of sodium ions is therefore 0.1 mol dm\(^{-3}\) and the concentration of chloride ions is also 0.1 mol dm\(^{-3}\).

\[
\text{NaCl(s)} + \text{aq} \rightarrow \text{Na}^+(\text{aq}) + \text{Cl}^- (\text{aq})
\]

0.1 mol 0.1 mol 0.1 mol

Example 14

If 9.53g (0.1 mol) of magnesium chloride (MgCl\(_2\)) is dissolved in 1dm\(^3\) of water then the concentration of magnesium chloride solution (MgCl\(_2\) aq) would be 0.1mol dm\(^{-3}\).

However the 0.1mol magnesium chloride would split up to form 0.1 mol of magnesium ions and 0.2 mol of chloride ions. The concentration of magnesium ions is therefore 0.1 mol dm\(^{-3}\) and the concentration of chloride ions is now 0.2 mol dm\(^{-3}\).

\[
\text{MgCl}_2(\text{s}) + \text{aq} \rightarrow \text{Mg}^{2+}(\text{aq}) + 2\text{Cl}^- (\text{aq})
\]

0.1 mol 0.1 mol 0.2 mol

Making a solution

- Weigh the sample bottle containing the required mass of solid on a 2 dp balance
- Transfer to beaker and reweigh sample bottle
- Record the difference in mass
- Add 100cm\(^3\) of distilled water to the beaker. Use a glass rod to stir to help dissolve the solid.
- Sometimes the substance may not dissolve well in cold water so the beaker and its contents could be heated gently until all the solid had dissolved.
- Pour solution into a 250cm\(^3\) graduated flask via a funnel.
- Rinse beaker and funnel and add washings from the beaker and glass rod to the volumetric flask.
- Make up to the mark with distilled water using a dropping pipette for last few drops.
- Invert flask several times to ensure uniform solution.

Alternatively the known mass of solid in the weighing bottle could be transferred to beaker, washed and washings added to the beaker.

Remember to fill so the bottom of the meniscus sits on the line on the neck of the flask. With dark liquids like potassium manganate it can be difficult to see the meniscus.
Dilutions

Diluting a solution

- Pipette 25 cm3 of original solution into a 250 cm3 volumetric flask
- Make up to the mark with distilled water using a dropping pipette for last few drops.
- Invert flask several times to ensure uniform solution.

Using a volumetric pipette is more accurate than a measuring cylinder because it has a smaller uncertainty.

Use a teat pipette to make up to the mark in volumetric flask to ensure volume of solution accurately measured and one doesn’t go over the line.

Calculating Dilutions

Diluting a solution will not change the amount of moles of solute present but increase the volume of solution and hence the concentration will lower.

moles = volume x concentration

If amount of moles does not change then

original volume x original concentration = new diluted volume x new diluted concentration

so

new diluted concentration = \[\frac{\text{original concentration} \times \text{original volume}}{\text{new diluted volume}} \]

The new diluted volume will be equal to the original volume of solution added + the volume of water added.

Example 15

50 cm3 of water are added to 150 cm3 of a 0.20 mol dm$^{-3}$ NaOH solution. Calculate the concentration of the diluted solution.

\[
\text{new diluted concentration} = \frac{0.20 \times \text{0.150}}{0.200} = 0.15 \text{ mol dm}^{-3}
\]

Example 16

Calculate the volume of water in cm3 that must be added to dilute 5.00 cm3 of 1.00 mol dm$^{-3}$ hydrochloric acid so that it has a concentration of 0.050 mol dm$^{-3}$

Moles original solution = conc x vol

= 1.00 x 0.005

= 0.005

New volume = moles /conc

= 0.005/0.05

= 0.1 dm3 = 100 cm3

Volume of water added = 100-5 = 95 cm3

Safety and hazards

Irritant - dilute acid and alkalis- wear goggles
Corrosive- stronger acids and alkalis wear goggles
Flammable – keep away from naked flames
Toxic – wear gloves- avoid skin contact- wash hands after use
Oxidising- Keep away from flammable / easily oxidised materials

Hazardous substances in low concentrations or amounts will not pose the same risks as the pure substance.
Ideal Gas Equation

The ideal gas equation applies to all gases and mixtures of gases. If a mixture of gases is used the value n will be the total moles of all gases in the mixture.

The biggest problems students have with this equation is choosing and converting to the correct units, so pay close attention to the units.

\[PV = nRT \]

Unit of pressure (P): Pa
Unit of volume (V): m\(^3\)
Unit of temp (T): K

\(n = \) moles
\(R = 8.31 \text{ JK}^{-1}\text{mol}^{-1} \)

Example 17: Calculate the mass of \(\text{Cl}_2 \) gas that has a pressure of 100 kPa, temperature 20 °C, volume 500 cm\(^3\). (\(R = 8.31 \))

\[
\begin{align*}
\text{moles} & = \frac{PV}{RT} \\
& = \frac{100,000 \times 0.0005}{8.31 \times 293} \\
& = 0.0205 \text{ mol}
\end{align*}
\]

\[
\begin{align*}
\text{Mass} & = \text{moles} \times \text{Mr} \\
& = 0.0205 \times (35.5 \times 2) \\
& = 1.46 \text{ g}
\end{align*}
\]

Converting temperature

\(^\circ\text{C} \rightarrow K \text{ add 273} \)

Example 18: 0.150g of a volatile liquid was injected into a sealed gas syringe. The gas syringe was placed in an oven at 70 °C at a pressure of 100kPa and a volume of 80.0cm\(^3\) was measured. Calculate the \(M_r \) of the volatile liquid (\(R = 8.31 \))

\[
\begin{align*}
\text{moles} & = \frac{PV}{RT} \\
& = \frac{100,000 \times 0.00008}{8.31 \times 343} \\
& = 0.00281 \text{ mol}
\end{align*}
\]

\[
\begin{align*}
M_r & = \frac{\text{mass}}{\text{moles}} \\
& = \frac{0.15}{0.00281} \\
& = 53.4 \text{ g mol}^{-1}
\end{align*}
\]

Using a gas syringe

Gas syringes can be used for a variety of experiments where the volume of a gas is measured, possibly to work out moles of gas or to follow reaction rates.

The volume of a gas depends on pressure and temperature, so when recording volume it is important to note down the temperature and pressure of the room.

Moles of gas can be calculated from gas volume (and temperature and pressure) using ideal gas equation \(PV = nRT \)

Potential errors in using a gas syringe:
- gas escapes before bung inserted
- syringe sticks
- some gases like carbon dioxide or sulfur dioxide are soluble in water so the true amount of gas is not measured.
Changing the Conditions of a gas

Questions may involve the same amount of gas under different conditions.

Example 19
40 cm3 of oxygen and 60 cm3 of carbon dioxide, each at 298 K and 100 kPa, were placed into an evacuated flask of volume 0.50 dm3. Calculate the pressure of the gas mixture in the flask at 298 K.

<table>
<thead>
<tr>
<th>Volume of O$_2$</th>
<th>Volume of CO$_2$</th>
<th>Total Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 cm3</td>
<td>60 cm3</td>
<td>100 cm3</td>
</tr>
</tbody>
</table>

As temperature is the same can make the above equation $P_1V_1 = P_2V_2$

$P_2 = \frac{P_1V_1}{V_2}$

$P_1 = 100000 \times 1 \times 10^{-4} / 5 \times 10^{-4}$

$P_2 = 20000 \text{ Pa}$

Reacting Volumes of Gas

Equal volumes of any gases measured under the same conditions of temperature and pressure contain equal numbers of molecules (or atoms if the gas is monatomic).

Volumes of gases reacting in a balanced equation can be calculated by simple ratio.

Example 20 500 cm3 of methane is combusted at 1atm and 300K. Calculate the volume of oxygen needed to react and calculate the volume of CO$_2$ given off under the same conditions.

CH$_4$(g) + 2 O$_2$(g) \rightarrow CO$_2$(g) + 2 H$_2$O(l)

1 mole 2 mole 1 mole

500 cm3 1 dm3 500 cm3

Simply multiply gas volume x2

Example 21 An important reaction which occurs in the catalytic converter of a car is:

2CO(g) + 2NO(g) \rightarrow 2CO$_2$(g) + N$_2$(g)

In this reaction, when 500 cm3 of CO reacts with 500 cm3 of NO at 650 °C and at 1 atm. Calculate the total volume of gases produced at the same temperature and pressure.

$2CO(g) + 2NO(g) \rightarrow 2CO_2(g) + N_2(g)$

500 cm3 500 cm3 500 cm3 250 cm3

Total volume of gases produced = 750 cm3
Converting quantities between different substances using a balanced equation

\[\text{N}_2 + 3\text{H}_2 \rightarrow 2\text{NH}_3 \]

The balancing (stoichiometric) numbers are mole ratios
e.g. 1 mole of \text{N}_2 reacts with 3 moles of \text{H}_2 to produce 2 moles of \text{NH}_3

Typically we are given a quantity of one substance and are asked to work out a quantity for another substance in the reaction. Any of the three equations below can be used.

1. For pure solids, liquids and gases
 \[\text{moles} = \frac{\text{mass}}{M_r} \]

2. For gases
 \[\text{PV} = nRT \]

3. For solutions
 \[\text{Concentration} = \frac{\text{moles}}{\text{volume}} \]

Example 22: Calculate the mass of carbon dioxide produced from heating 5.50 g of sodium hydrogencarbonate.

\[2\text{NaHCO}_3 \rightarrow \text{Na}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O} \]

Step 1: calculate moles of sodium hydrogencarbonate
 Moles = mass / Mr
 = 5.50 / 84
 = 0.0655 mol

Step 2: use balanced equation to give moles of \text{CO}_2
 2 moles \text{NaHCO}_3 : 1 moles \text{CO}_2
 So 0.0655 \text{HNO}_3 : 0.0328 moles \text{CO}_2

Step 3: calculate mass of \text{CO}_2
 Mass = moles \times Mr
 = 0.0328 \times 44.0
 = 1.44 g

Example 23: 23.6 cm\(^3\) of \text{H}_2\text{SO}_4 neutralised 25.0 cm\(^3\) of 0.150M \text{NaOH}.

\[\text{H}_2\text{SO}_4 + 2\text{NaOH} \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O} \]

Step 1: calculate moles of sodium hydroxide
 Moles = conc \times vol
 = 0.150 \times 0.025
 = 0.00375 mol

Step 2: use balanced equation to give moles of \text{H}_2\text{SO}_4
 2 moles \text{NaOH} : 1 moles \text{H}_2\text{SO}_4
 So 0.00375 \text{NaOH} : 0.001875 mol \text{H}_2\text{SO}_4

Step 3 calculate concentration of \text{H}_2\text{SO}_4
 \[\text{conc} = \frac{\text{moles}}{\text{volume}} \]
 = 0.001875 / 0.0236
 = 0.0794 mol dm\(^{-3}\)

Example 24: What is the total volume of gas produced in dm\(^3\) at 333K and 100kPa when 0.651 g of magnesium nitrate decomposes when heated?

\[2\text{Mg} (\text{NO}_3)_2(s) \rightarrow 2\text{MgO}(s) + 4\text{NO}_2(g) + \text{O}_2(g) \]

Step 1: calculate moles of magnesium nitrate
 Moles = mass / Mr
 = 0.651 / 148.3
 = 0.00439 mol

Step 2: use balanced equation to give moles of gas produced
 2 moles \text{Mg} (\text{NO}_3)_2 : 4\text{NO}_2(g) + \text{O}_2(g) i.e. 5 moles of gas
 So 0.00439 \text{Mg} (\text{NO}_3)_2 : 0.01098(0.00439 \times 5/2) moles gas

Step 3: calculate volume of gas
 \[\text{Volume} = \frac{nRT}{P} \]
 = (0.01098 \times 8.31 \times 333) / 100000
 = 0.000304 m\(^3\)
 = 0.303 dm\(^3\)

Example 25: Calculate the mass of copper that reacts completely with 150 cm\(^3\) of 1.60 mol dm\(^{-3}\) nitric acid

\[3\text{Cu} + 8\text{HNO}_3 \rightarrow 3\text{Cu(NO}_3)_2 + 2\text{NO} + 4\text{H}_2\text{O} \]

Step 1: calculate moles of nitric acid
 Moles = conc \times vol
 = 1.6 \times 0.15
 = 0.24 mol

Step 2: use balanced equation to give moles of Cu
 8 moles \text{HNO}_3 : 3 moles Cu
 So 0.24 \text{HNO}_3 : 0.09 (0.24 \times 3/8) mol Cu

Step 3: calculate mass of Cu
 \[\text{Mass} = \text{moles} \times Mr \]
 = 0.09 \times 63.5
 = 5.71 g
Example 26 Calculate the maximum mass of titanium that could be produced from reacting 100 g of TiCl₄ with 80.0 g of sodium.

\[\text{TiCl}_4 + 4 \text{ Na} \rightarrow 4 \text{NaCl} + \text{Ti} \]

Step 1: calculate amount, in mol, \(\text{TiCl}_4 \)

\[
\text{amount} = \frac{\text{mass}}{\text{Mr}} = \frac{100}{189.9} = 0.527 \text{ mol}
\]

Step 2 use balanced equation to work out which reactant is in excess

Using the ratio of 1TiCl₄:4 Na we can see that 0.527 mol of TiCl₄ should react with 2.108 mol of Na. We actually have 3.48 mol of Na which is an excess of 1.372 mol. We can complete calculation using the limiting reactant of TiCl₄.

Step 3: use balanced equation to calculate amount in mol of Ti formed

1 mol TiCl₄: 1 mole Ti
So 0.527 mol TiCl₄ produces 0.527 mole Ti

Step 4: calculate mass of Ti formed

\[
\text{Mass} = \text{amount} \times \text{Mr} = 0.527 \times 47.9 = 25.2 \text{ g}
\]

% Yield and % Atom economy

\[
\text{percentage yield} = \left(\frac{\text{actual yield}}{\text{theoretical yield}} \right) \times 100
\]

\[
\text{percentage atom economy} = \left(\frac{\text{Mass of useful products}}{\text{Mass of all reactants}} \right) \times 100
\]

Example 27: Calculate the % atom economy for the following reaction where Fe is the desired product assuming the reaction goes to completion.

\[\text{Fe}_2\text{O}_3 + 3\text{CO} \rightarrow 2\text{Fe} + 3\text{CO}_2 \]

% atom economy = \[
\frac{(2 \times 55.8)}{(2 \times 55.8 + 3 \times 16) + 3 \times (12+16)} \times 100
\]

= 45.8%

Example 28: 25.0 g of \(\text{Fe}_2\text{O}_3 \) was reacted and it produced 10.0 g of Fe. Calculate the percentage yield.

\[\text{Fe}_2\text{O}_3 + 3\text{CO} \rightarrow 2\text{Fe} + 3\text{CO}_2 \]

First calculate maximum mass of Fe that could be produced

Step 1: work out moles of iron oxide
Moles = mass / Mr
= 25.0 / 159.6
= 0.1566 mol

Step 2: use balanced equation to give moles of Fe
1 moles \(\text{Fe}_2\text{O}_3 \) : 2 moles Fe
So 0.1566 \(\text{Fe}_2\text{O}_3 \) : 0.313 moles Fe

Step 3: work out mass of Fe
Mass = moles \times Mr
= 0.313 \times 55.8
= 17.5 g

% yield = \[
\left(\frac{\text{actual yield}}{\text{theoretical yield}} \right) \times 100
\]

= \left(\frac{10}{17.5} \right) \times 100
= 57.1%
Titrations

The method for carrying out the titration

• rinse equipment (burette with acid, pipette with alkali, conical flask with distilled water)
• pipette 25 cm3 of alkali into conical flask
• touch surface of alkali with pipette (to ensure correct amount is added)
• adds acid solution from burette
• make sure the jet space in the burette is filled with acid
• add a few drops of indicator and refer to colour change at end point
• phenolphthalein [pink (alkali) to colourless (acid); end point pink colour just disappears] [use if NaOH is used]
• methyl orange [yellow (alkali) to red (acid); end point orange] [use if HCl is used]
• use a white tile underneath the flask to help observe the colour change
• add acid to alkali whilst swirling the mixture and add acid dropwise at end point
• note burette reading before and after addition of acid
• repeats titration until at least 2 concordant results are obtained- two readings within 0.1 of each other

Working out average titre results
Only make an average of the concordant titre results
If 2 or 3 values are within 0.10cm3 and therefore concordant or close then we can say results are accurate and repeatable and the titration technique is good/ consistent

Recording results
• Results should be clearly recorded in a table
• Result should be recorded in full (i.e. both initial and final readings)
• Record titre volumes to 2dp (0.05 cm3)

Common Titration Equations
CH$_3$CO$_2$H + NaOH \rightarrow CH$_3$CO$_2$Na$^+$ + H$_2$O
H$_2$SO$_4$ + 2NaOH \rightarrow Na$_2$SO$_4$+2H$_2$O
HCl + NaOH \rightarrow NaCl +H$_2$O
NaHCO$_3$ + HCl \rightarrow NaCl + CO$_2$ + H$_2$O
Na$_2$CO$_3$ + 2HCl \rightarrow2NaCl + CO$_2$ + H$_2$O

Distilled water can be added to the conical flask during a titration to wash the sides of the flask so that all the acid on the side is washed into the reaction mixture to react with the alkali. It does not affect the titration reading as water does not react with the reagents or change the number of moles of acid added.

Recording results
• Results should be clearly recorded in a table
• Result should be recorded in full (i.e. both initial and final readings)
• Record titre volumes to 2dp (0.05 cm3)

Titrating mixtures
If titrating a mixture to work out the concentration of an active ingredient it is necessary to consider if the mixture contains other substances that have acid base properties.
If they don’t have acid base properties we can titrate with confidence.

Testing batches
In quality control it will be necessary to do titrations/testing on several samples as the amount/concentration of the chemical being tested may vary between samples.

Safely dealing with excess acid
Sodium hydrogen carbonate (NaHCO$_3$) and calcium carbonate (CaCO$_3$) are good for neutralising excess acid in the stomach or acid spills because they are not corrosive and will not cause a hazard if used in excess. They also have no toxicity if used for indigestion remedies but the CO$_2$ produced can cause wind.
Magnesium hydroxide is also suitable for dealing with excess stomach acid as it has low solubility in water and is only weakly alkaline so not corrosive or dangerous to drink (unlike the strong alkali sodium hydroxide). It will also not produce any carbon dioxide gas.

Safety precautions
Acids and alkalis are corrosive (at low concentrations acids are irritants)
Wear eye protection and gloves
If spilled immediately wash affected parts after spillage
If substance is unknown treat it as potentially toxic and wear gloves.

If the jet space is not filled properly prior to commencing the titration it will lead to errors if it then fills during the titration, leading to a larger than expected titre reading.
A conical flask is used in preference to a beaker because it is easier to swirl the mixture in a conical flask without spilling the contents.
Indicators are generally weak acids so only add a few drops of them. If too much is added it will affect the titration result.

Distilled water can be added to the conical flask during a titration to wash the sides of the flask so that all the acid on the side is washed into the reaction mixture to react with the alkali. It does not affect the titration reading as water does not react with the reagents or change the number of moles of acid added.

Common Titration Equations
CH$_3$CO$_2$H + NaOH \rightarrow CH$_3$CO$_2$Na$^+$ + H$_2$O
H$_2$SO$_4$ + 2NaOH \rightarrow Na$_2$SO$_4$+2H$_2$O
HCl + NaOH \rightarrow NaCl +H$_2$O
NaHCO$_3$ + HCl \rightarrow NaCl + CO$_2$ + H$_2$O
Na$_2$CO$_3$ + 2HCl \rightarrow2NaCl + CO$_2$ + H$_2$O
Example 29: A 25.0 cm³ sample of vinegar was diluted in a 250 cm³ volumetric flask. This was then put in a burette and 23.10 cm³ of the diluted vinegar neutralised 25.0 cm³ of 0.100 mol dm⁻³ NaOH. Calculate the concentration of the vinegar in g dm⁻³.

CH₃CO₂H + NaOH → CH₃CO₂Na⁺ + H₂O

Step 1: work out moles of sodium hydroxide

moles = conc x vol
= 0.10 x 0.025
= 0.00250 mol

Step 2: use balanced equation to give moles of CH₃CO₂H
1 moles NaOH : 1 moles CH₃CO₂H
So 0.00250 NaOH : 0.00250 moles CH₃CO₂H

Step 3: work out concentration of diluted CH₃CO₂H in 23.1 (and 250 cm³) in mol dm⁻³

conc = moles/volume
= 0.00250 / 0.0231
= 0.108 mol dm⁻³

Step 4: work out concentration of original concentrated CH₃CO₂H in 25 cm³ in gdm⁻³

conc = 0.108 x 10 = 1.08 mol dm⁻³

Step 5: work out concentration of CH₃CO₂H in original concentrated 25 cm³ in gdm⁻³

conc in g dm⁻³ = conc in mol dm⁻³ x Mr
= 1.08 x 60 = 64.8 g dm⁻³

Example 30. An unknown metal carbonate reacts with hydrochloric acid according to the following equation.

M₂CO₃(aq) + 2HCl(aq) → 2MCl(aq) + CO₂(g) + H₂O(l)

A 3.96 g sample of M₂CO₃ was dissolved in distilled water to make 250 cm³ of solution. A 25.0 cm³ portion of this solution required 32.8 cm³ of 0.175 mol dm⁻³ hydrochloric acid for complete reaction. Calculate the Mr of M₂CO₃ and identify the metal M.

1. Calculate the number of moles of HCl used

moles = conc x vol
= 0.175 x 0.0328
= 0.00574 mol

2. Work out number of moles of M₂CO₃ in 25.0 cm³ put in conical flask

use balanced equation to give moles of M₂CO₃
2 mol HCl : 1 mol M₂CO₃
So 0.00574 NaOH : 0.00287 mol M₂CO₃

3. Calculate the number of moles M₂CO₃ acid in original 250 cm³ of solution

Moles in 250cm³ = 0.00287 x 10
= 0.0287 mol

4. work out the Mr of M₂CO₃

Mr = mass / moles
= 3.96 / 0.0287 = 138.0

5. Work out Ar of M = (138-12-16x3) / 2

Ar of M = 39 M= potassium

Common Titration Equations

CH₃CO₂H + NaOH → CH₃CO₂Na⁺ + H₂O
H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O
HCl + NaOH → NaCl + H₂O
NaHCO₃ + HCl → NaCl + CO₂ + H₂O
Na₂CO₃ + 2HCl → 2NaCl + CO₂ + H₂O

Example 31

950 mg of impure calcium carbonate tablet was crushed. 50.0 cm³ of 1.00 mol dm⁻³ hydrochloric acid, an excess, was then added. After the tablet had reacted, the mixture was transferred to a volumetric flask. The volume was made up to exactly 100 cm³ with distilled water. 10.0 cm³ of this solution was titrated with 11.1 cm³ of 0.300 mol dm⁻³ sodium hydroxide solution.

Calculate the percentage of CaCO₃ by mass in the tablet.

1. Calculate the number of moles of sodium hydroxide used

moles = conc x vol
= 0.30 x 0.0111
= 0.00333 mol

2. Work out number of moles of hydrochloric acid left in 10.0 cm³

use balanced equation to give moles of HCl
1 mol NaOH : 1 mol HCl
So 0.00333 NaOH : 0.00333 mol HCl

3. Calculate the number of moles of hydrochloric acid left in 100 cm³ of solution

Moles in 100cm³ = 0.00333 x 10
= 0.0333 mol

4. Calculate the number of moles of HCl that reacted with the indigestion tablet.

In original HCl 50.0 cm³ of 1.00 mol dm⁻³ there is 0.05moles
moles of HCl that reacted with the indigestion tablet = 0.0167 mol

5 Use balanced equation to give moles of CaCO₃
CaCO₃(s) + 2HCl(aq) → CaCl₂(aq) + CO₂(g) + H₂O(l)
2 mol HCl : 1 mol CaCO₃
So 0.0167 HCl : 0.00835 mol CaCO₃

6. work out the mass of CaCO₃ in original tablet

mass = moles x Mr
= 0.00835 x 100 = 0.835 g

percentage of CaCO₃ by mass in the tablet = 0.835/0.950 x100
= 87.9 %
Calculating Apparatus Uncertainties

Each type of apparatus has a sensitivity uncertainty:

• balance ± 0.001 g (if using a 3 d.p. balance)
• volumetric flask ± 0.1 cm³
• 25 cm³ pipette ± 0.1 cm³
• burette (start & end readings and end point) ± 0.15 cm³

Calculate the percentage error for each piece of equipment used by:

$\%$ uncertainty $= \frac{\pm \text{uncertainty}}{\text{Measurement made on apparatus}} \times 100$

e.g. for burette
$\%$ uncertainty $= \frac{0.15}{\text{average titre result}} \times 100$

To calculate the maximum total percentage apparatus uncertainty in the final result add all the individual equipment uncertainties together.

Reducing uncertainties in a titration

Replacing measuring cylinders with pipettes or burettes which have lower apparatus uncertainty will lower the $\%$ uncertainty.

To reduce the $\%$ uncertainty in a burette reading it is necessary to make the titre a larger volume. This could be done by: increasing the volume and concentration of the substance in the conical flask or by decreasing the concentration of the substance in the burette.

Reducing uncertainties in measuring mass

Using a balance that measures to more decimal places or using a larger mass will reduce the $\%$ uncertainty in weighing a solid.

Weighing sample before and after addition and then calculating difference will ensure a more accurate measurement of the mass added.

Calculating the percentage difference between the actual value and the calculated value

If we calculated an Mr of 203 and the real value is 214, then the calculation is as follows:

Calculate difference 214-203 = 11
$\% = \frac{11}{214} \times 100$
$= 5.41\%$

The uncertainty of a reading (one judgement) is at least ± 0.5 of the smallest scale reading.

The uncertainty of a measurement (two judgements) is at least ± 1 of the smallest scale reading.

To decrease the apparatus uncertainties you can either decrease the sensitivity uncertainty by using apparatus with a greater resolution (finer scale divisions) or you can increase the size of the measurement made.

Uncertainty of a measurement using a burette. If the burette used in the titration had an uncertainty for each reading of $\pm/–0.05$ cm³ then during a titration two readings would be taken so the uncertainty on the titre volume would be $\pm/–0.10$ cm³. Then often another 0.05 is added on because of uncertainty identifying the end point colour change.

If looking at a series of measurements in an investigation, the experiments with the smallest readings will have the highest experimental uncertainties.

If the $\%$ uncertainty due to the apparatus < percentage difference between the actual value and the calculated value then there is a discrepancy in the result due to other errors.

If the $\%$ uncertainty due to the apparatus > percentage difference between the actual value and the calculated value then there is no discrepancy and all the difference between values can be explained by the sensitivity of the equipment.