1.12 Acid Base Equilibria

Bronsted-Lowry Definition of acid Base behaviour

A Bronsted-Lowry acid is defined as a substance that can **donate a proton**.
A Bronsted-Lowry base is defined as a substance that can **accept a proton**.

\[
\text{HCl} (g) + \text{H}_2\text{O} (l) \rightarrow \text{H}_3\text{O}^+ (aq) + \text{Cl}^- (aq)
\]

Each acid is linked to a conjugate base on the other side of the equation.

Calculating pH

\[\text{pH} = - \log [\text{H}^+]\]

Where \([\text{H}^+]\) is the concentration of hydrogen ions in the solution.

Calculating pH of strong acids

Strong acids **completely dissociate**

The concentration of hydrogen ions in a monoprotic strong acid will be the same as the concentration of the acid.

For HCl and HNO₃ the \([\text{H}^+(aq)]\) will be the same as the original concentration of the acid.

For 0.1 mol dm⁻³ HCl the pH will be \(-\log[0.1] = 1.00\)

Always give pH values to **2d.p.** In the exam

Finding \([\text{H}^+]\) from pH

\[\text{[H}^+] = 1 \times 10^{-\text{pH}}\]

On most calculators this is done by pressing

Inv (or 2ⁿᵈ function) → log → - number(pH)

Example 1

Calculate the concentration of HCl with a pH of 1.35

\[\text{[H}^+] = 1 \times 10^{-1.35} = 0.045 \text{ mol dm}^{-3}\]

Finding [H⁺] from pH

\[\text{[H}^+] = \sqrt{\text{Kw}}\]

At 25°C the value of Kw for all aqueous solutions is \(1\times10^{-14}\) mol²dm⁻⁶

The Kw expression can be used to calculate \([\text{H}^+ (aq)]\) ions if we know the \([\text{OH}^- (aq)]\) ions and vice versa.

Finding pH of pure water

Pure water/ neutral solutions are **neutral** because the \([\text{H}^+(aq)] = [\text{OH}^- (aq)]\)

Using Kw = \([\text{H}^+(aq)]\text{[OH}^- (aq)]\) then when neutral \(\text{Kw} = [\text{H}^+(aq)]^2\)

\(\text{and} \ [\text{H}^+(aq)] = \sqrt{\text{Kw}}\)

At 25°C \([\text{H}^+(aq)] = \sqrt{1\times10^{-14}} = 1\times10^{-7}\) so pH = 7

Example 2

Calculate the pH of water at 50°C given that \(\text{K_w} = 5.476 \times 10^{-14}\) mol²dm⁻⁶ at 50°C

\([\text{H}^+(aq)] = \sqrt{\text{Kw}} = \sqrt{5.476 \times 10^{-14}} = 2.34 \times 10^{-7} \text{ mol dm}^{-3}\)

\(\text{pH} = -\log 2.34 \times 10^{-7} = 6.6\)

It is still neutral though as \([\text{H}^+(aq)] = [\text{OH}^- (aq)]\)

At different temperatures to 25°C the pH of pure water changes. Le Chatelier’s principle can predict the change. The dissociation of water is endothermic so increasing the temperature would push the equilibrium to the right giving a bigger concentration of H⁺ ions and a lower pH.
Calculating pH of a Strong Base

For bases we are normally given the concentration of the hydroxide ion.

To work out the pH we need to work out \([H^+\text{(aq)}]\) using the \(K_w\) expression.

Strong bases completely dissociate into their ions.
\(\text{NaOH} \rightarrow \text{Na}^+ + \text{OH}^-\)

Weak Acids

Weak acids only slightly dissociate when dissolved in water, giving an equilibrium mixture.

\[
\text{HA} + \text{H}_2\text{O} (l) \rightleftharpoons \text{H}_2\text{O}^+ + \text{A}^- (aq)
\]

We can simplify this to:
\[
\text{HA} (aq) \rightleftharpoons \text{H}^+ (aq) + \text{A}^- (aq)
\]

Weak acids dissociation expression

\[
K_a = \frac{[H^+\text{(aq)}][A^-\text{(aq)}]}{[HA \text{(aq)}]}
\]

The \(K_a\) for ethanoic acid is \(1.7 \times 10^{-5}\) mol dm\(^{-3}\).

The larger \(K_a\) the stronger the acid.

Calculating pH of a Weak Acid

To make the calculation easier two assumptions are made to simplify the \(K_a\) expression:

1) \([H^+\text{(aq)}]_{\text{eqm}} = [A^-\text{(aq)}]_{\text{eqm}}\) because they have dissociated according to a 1:1 ratio.

2) As the amount of dissociation is small we assume that the initial concentration of the undissociated acid has remained constant.

So \([HA\text{(aq)}]_{\text{eqm}} = [HA\text{(aq)}]_{\text{initial}}\)

Example 3

Calculate the pH of the strong base 0.1 mol dm\(^{-3}\) \(\text{NaOH}\)

Assume complete dissociation.

\(K_w = [H^+\text{(aq)}][OH^-\text{(aq)}] = 1 \times 10^{-14}\)

\([H^+\text{(aq)}] = \frac{K_w}{[OH^-\text{(aq)}]} = 1 \times 10^{-14} / 0.1 = 1 \times 10^{-13}\) M

\(\text{pH} = -\log[1 \times 10^{-13}] = 13.00\)

Example 4

Write an equation for dissociation of propanoic acid and its \(K_a\) expression.

\[
\text{CH}_3\text{CH}_2\text{CO}_2\text{H}(aq) \rightleftharpoons \text{H}^+(aq) + \text{CH}_3\text{CH}_2\text{CO}_2^- (aq)
\]

\[
K_a = \frac{[H^+(aq)][\text{CH}_3\text{CH}_2\text{CO}_2^- (aq)]}{[\text{CH}_3\text{CH}_2\text{CO}_2\text{H}(aq)]}
\]

Example 5

What is the pH of a solution of 0.01 mol dm\(^{-3}\) ethanoic acid (\(k_a\) is \(1.7 \times 10^{-5}\) mol dm\(^{-3}\))?

\[
\text{CH}_3\text{CO}_2\text{H}(aq) \rightleftharpoons \text{H}^+(aq) + \text{CH}_3\text{CO}_2^- (aq)
\]

\[
K_a = \frac{[H^+(aq)][\text{CH}_3\text{CO}_2^- (aq)]}{[\text{CH}_3\text{CO}_2\text{H}(aq)]}
\]

\[
[H^+(aq)]^2 = 1.7 \times 10^{-5} \times 0.01
\]

\[\text{pH} = -\log[H^+] = -\log(4.12 \times 10^{-4})\]

\[\text{pH} = 3.38\]

Example 6

Calculate the concentration of propanoic acid with a pH of 3.52 (\(k_a \) is \(1.35 \times 10^{-5}\) mol dm\(^{-3}\))

\[
\text{CH}_3\text{CH}_2\text{CO}_2\text{H}(aq) \rightleftharpoons \text{H}^+(aq) + \text{CH}_3\text{CH}_2\text{CO}_2^- (aq)
\]

\[\text{pH} = 3.52\]

\[\text{[H}^+(aq)] = 1 \times 10^{-3.52} = 0.000302\text{M}\]

\[
K_a = \frac{[H^+(aq)][\text{CH}_3\text{CH}_2\text{CO}_2^- (aq)]}{[\text{CH}_3\text{CH}_2\text{CO}_2\text{H}(aq)]}
\]

\[
[\text{CH}_3\text{CH}_2\text{CO}_2\text{H}(aq)]_{\text{initial}} = 9.12 \times 10^{-3} / 1.35 \times 10^{-5} = 6.75 \times 10^{-3} \text{ mol dm}^{-3}\]

N Goalby chemrevise.org
pH Calculations involving Neutralisation Reactions

These can be quite complex calculations working out the pH of a partially neutralised acid or the pH of the solution if too much alkali has been added and has gone past neutralisation. The method differs if the acid is strong or weak for the partially neutralised case.

Strong Acid and Strong Base Neutralisations

- Work out moles of original acid and hence moles H⁺
- Work out moles of base added and hence moles OH⁻
- Work out which one is in excess

Example 7 15cm³ of 0.5 mol dm⁻³ HCl is reacted with 35cm³ of 0.55 mol dm⁻³ NaOH. Calculate the pH of the resulting mixture.

Moles HCl = mol H⁺ = conc x vol = 0.5 x 0.015 = 0.0075mol
Moles NaOH = mol OH⁻ = conc x vol = 0.55 x 0.035 = 0.01925
H⁺ + OH⁻ → H₂O
Moles of OH⁻ in excess = 0.01925 – 0.0075 = 0.01175

\[[OH⁻] = \text{moles excess OH}⁻ / \text{total volume (dm}^³) = 0.01175/ 0.05 = 0.235 \text{ mol dm}^³ \]

\[[H⁺] = K_w / [OH⁻] \]
\[= 1 \times 10^{-14} / 0.235 = 4.25 \times 10^{-14} \]

\[pH = - \log [H⁺] \]
\[= - \log 4.25 \times 10^{-14} \]
\[= 13.37 \]

Strong diprotic acids and bases

Questions of the type in Example 7 and 8 may include strong diprotic acids such as H₂SO₄ or bases such as Ba(OH)₂.

Example 9 35cm³ of 0.5 mol dm⁻³ H₂SO₄ is reacted with 30cm³ of 0.55 mol dm⁻³ NaOH. Calculate the pH of the resulting mixture.

Moles H₂SO₄ = conc x vol = 0.5 x 0.035 = 0.0175mol
Moles H⁺ = 0.0175 x 2 = 0.035
Moles NaOH = mol OH⁻ = conc x vol = 0.55 x 0.030 = 0.0165
H⁺ + OH⁻ → H₂O
Moles of H⁺ in excess = 0.035 - 0.0165 = 0.0185

\[[H⁺] = \text{moles excess H}⁺ / \text{total volume (dm}^³) = 0.0185/ 0.065 = 0.28 \text{ mol dm}^³ \]

\[pH = - \log [H⁺] \]
\[= - \log 0.28 \]
\[= 0.55 \]

Example 10 15cm³ of 0.5mol dm⁻³ HCl is reacted with 35cm³ of 0.45 mol dm⁻³ Ba(OH)₂. Calculate the pH of the resulting mixture.

Moles HCl = mol H⁺ = conc x vol = 0.5 x 0.015 = 0.0075mol
Moles Ba(OH)₂ = conc x vol = 0.45 x 0.035 = 0.01575
Moles OH⁻ = 0.01575 x 2 = 0.0315
H⁺ + OH⁻ → H₂O
Moles of OH⁻ in excess = 0.0315 – 0.0075 = 0.024

\[[OH⁻] = \text{moles excess OH}⁻ / \text{total volume (dm}^³) = 0.024/ 0.05 = 0.48 \text{ mol dm}^³ \]

\[[H⁺] = K_w / [OH⁻] \]
\[= 1 \times 10^{-14} / 0.48 = 2.08 \times 10^{-14} \]

\[pH = - \log [H⁺] \]
\[= - \log 2.08 \times 10^{-14} \]
\[= 13.68 \]

N Goalby chemrevise.org
Weak Acid and Strong Base Neutralisations

Work out moles of original acid
Work out moles of base added
Work out which one is in excess

If excess acid use the same method
with excess alkali and strong acid above

If excess alkali

Work out new concentration of excess HA

\[
[HA] = \frac{\text{initial moles HA} - \text{moles OH}^-}{\text{total volume (dm}^3)}
\]

Work out concentration of salt formed

\[
[A^-] = \frac{\text{moles OH}^-\text{-added}}{\text{total volume (dm}^3)}
\]

Rearrange \(ka = \frac{[H^+] [A^-]}{[HA]}\) to get \([H^+]

\[
\text{pH} = -\log [H^+]
\]

Example 11

55cm\(^3\) of 0.5 mol dm\(^-3\) CH\(_3\)CO\(_2\)H is reacted with 25cm\(^3\) of 0.35 mol dm\(^-3\) NaOH. Calculate the pH of the resulting mixture?

Moles CH\(_3\)CO\(_2\)H = conc x vol =0.5x 0.055 = 0.0275mol

Moles NaOH = conc x vol = 0.35 x 0.025 = 0.00875

Moles of CH\(_3\)CO\(_2\)H in excess = 0.0275 - 0.00875 = 0.01875 (as 1:1 ratio)

\[
[\text{CH}_3\text{CO}_2\text{H}] = \frac{\text{moles excess CH}_3\text{CO}_2\text{H}}{\text{total volume (dm}^3)}
\]

= 0.01875/ 0.08 = 0.234M

\[
\text{CH}_3\text{CO}_2\text{H} + \text{NaOH} \rightarrow \text{CH}_3\text{CO}_2\text{Na} + \text{H}_2\text{O}
\]

\(ka = 1.7 \times 10^{-5}\) mol dm\(^-3\)

\[
[\text{H}^+] = \frac{ka \times [\text{CH}_3\text{CO}_2\text{H}]}{[\text{CH}_3\text{CO}_2^-]}
\]

\[
\text{pH} = -\log [\text{H}^+]
\]

\[
\text{pH} = -\log (3.64 \times 10^{-5}) = 4.44
\]

Diluting an acid or alkali

\[
\text{pH of diluted strong acid} \quad [\text{H}^+] = [\text{H}^+]_{\text{old}} \times \frac{\text{old volume}}{\text{new volume}}
\]

\[
\text{pH} = -\log [\text{H}^+]
\]

\[
\text{pH of diluted base} \quad [\text{OH}^-] = [\text{OH}^-]_{\text{old}} \times \frac{\text{old volume}}{\text{new volume}}
\]

\[
[\text{H}^+] = \frac{K_w}{[\text{OH}^-]}
\]

\[
\text{pH} = -\log [\text{H}^+]
\]

Example 13

Calculate the new pH when 50.0 cm\(^3\) of 0.150 mol dm\(^-3\) HCl is mixed with 500 cm\(^3\) of water.

\[
[\text{H}^+] = [\text{H}^+]_{\text{old}} \times \frac{\text{old volume}}{\text{new volume}}
\]

\[
[\text{H}^+]_{\text{old}} = 0.150 \times \frac{0.05}{0.55} = 0.0136
\]

\[
\text{pH} = -\log [\text{H}^+]
\]

\[
= -\log 0.0136
\]

\[
= 1.87
\]
Buffer Solutions

A Buffer solution is one where the pH does **not change significantly** if small amounts of acid or alkali are added to it.

An acid buffer solution is made from a **weak acid** and a salt of that weak acid (made from reacting the weak acid with a strong base).

Example: ethanoic acid and sodium ethanoate

\[
\text{CH}_3\text{CO}_2\text{H}^{(aq)} \quad \text{and} \quad \text{CH}_3\text{CO}_2^{-}\text{Na}^+
\]

A basic buffer solution is made from a weak base and a salt of that weak base (made from reacting the weak base with a strong acid).

Example: ammonia and ammonium chloride

\[
\text{NH}_3 \quad \text{and} \quad \text{NH}_4^+\text{Cl}^-
\]

How Buffer solutions work

In an ethanoic acid buffer

\[
\text{CH}_3\text{CO}_2\text{H}^{(aq)} \leftrightarrow \text{CH}_3\text{CO}_2^- + \text{H}^+^{(aq)}
\]

Acid conjugate base

The buffer contains a reservoir of HA and A⁻ ions

In a buffer solution there is a much higher concentration of the salt CH₃CO₂⁻ ion than in the pure acid.

If small amounts of acid is added to the buffer: Then the above equilibrium will shift to the left removing nearly all the H⁺ ions added,

\[
\text{CH}_3\text{CO}_2^- + \text{H}^+ \rightarrow \text{CH}_3\text{CO}_2\text{H}
\]

As there is a large concentration of the salt ion in the buffer the ratio \([\text{CH}_3\text{CO}_2\text{H}] / [\text{CH}_3\text{CO}_2^-]\) stays almost constant, so the pH stays fairly constant.

\[
[H^+^{(aq)}] = K_a \frac{[\text{CH}_3\text{CO}_2\text{H}^{(aq)}]}{[\text{CH}_3\text{CO}_2^-^{(aq)}]}
\]

If small amounts of alkali is added to the buffer. The OH⁻ ions will react with H⁺ ions to form water.

\[
\text{H}^+ + \text{OH}^- \rightarrow \text{H}_2\text{O}
\]

The equilibrium will then shift to the right to produce more H⁺ ions.

\[
\text{CH}_3\text{CO}_2\text{H}^{(aq)} \leftrightarrow \text{CH}_3\text{CO}_2^- + \text{H}^+^{(aq)}
\]

Some ethanoic acid molecules are changed to ethanoate ions but as there is a large concentration of the salt ion in the buffer the ratio \([\text{CH}_3\text{CO}_2\text{H}] / [\text{CH}_3\text{CO}_2^-]\) stays almost constant, so the pH stays fairly constant.

Learn these explanations carefully and be able to write the equilibrium to illustrate your answer.
Calculating the pH of Buffer Solutions

We still use the weak acids dissociation expression

\[
Ka = \frac{[H^+][A^-]}{[HA]}
\]

But here we assume the \([A^-]\) concentration is due to the added salt only.

Normally we rearrange to

\[
[H^+] = Ka \cdot \frac{[HA]}{[A^-]}
\]

We also assume the initial concentration of the acid has remained constant, because amount that has dissociated or reacted is small.

Example 14: making a buffer by adding a salt solution

Calculate the pH of a buffer made from 45 cm\(^3\) of 0.1 mol dm\(^{-3}\) ethanoic acid and 50 cm\(^3\) of 0.15 mol dm\(^{-3}\) sodium ethanoate (\(Ka = 1.7 \times 10^{-5}\))

Work out the moles of both solutions

- Moles ethanoic = conc x vol = 0.1 x 0.045 = 0.0045 mol
- Moles sodium ethanoate = conc x vol = 0.15 x 0.050 = 0.0075

\[
[H^+] = 1.7 \times 10^{-5} \times \frac{0.0045}{0.0075} \rightarrow [H^+] = 1.02 \times 10^{-5}
\]

\[
\text{pH} = -\log [H^+] = -\log 1.02 \times 10^{-5} = 4.99
\]

Example 15: making a buffer by adding a solid salt

A buffer solution is made by adding 1.1g of sodium ethanoate into 100 cm\(^3\) of 0.4 mol dm\(^{-3}\) ethanoic acid. Calculate its pH. (\(Ka = 1.7 \times 10^{-5}\))

Work out the moles of both solutions

- Moles ethanoic = conc x vol = 0.4 x 0.1 = 0.04 mol
- Moles sodium ethanoate = mass/Mr = 1.1/82 = 0.0134

\[
[H^+] = 1.7 \times 10^{-5} \times \frac{0.04}{0.0134} \rightarrow [H^+] = 5.07 \times 10^{-5}
\]

\[
\text{pH} = -\log [H^+] = -\log 5.07 \times 10^{-5} = 4.29
\]

Example 16: making a buffer by partially neutralising a weak acid with alkali

55 cm\(^3\) of 0.5 mol dm\(^{-3}\) \(\text{CH}_3\text{CO}_2\text{H}\) is reacted with 25 cm\(^3\) of 0.35 mol dm\(^{-3}\) \(\text{NaOH}\). Calculate the pH of the resulting buffer solution.

\[
\text{CH}_3\text{CO}_2\text{H} + \text{NaOH} \rightarrow \text{CH}_3\text{CO}_2\text{Na} + \text{H}_2\text{O}
\]

\(Ka = 1.7 \times 10^{-5}\) mol dm\(^{-3}\)

Moles of \(\text{CH}_3\text{CO}_2\text{H}\) in excess = 0.0275-0.00875 = 0.01875 (as 1:1 ratio)

\[
\left[\text{CH}_3\text{CO}_2\text{H}\right] = \frac{\text{moles excess } \text{CH}_3\text{CO}_2\text{H}}{\text{total volume (dm}^3\text{)}} = 0.01875/0.08 = 0.234 \text{M}
\]

\[
\left[\text{CH}_3\text{CO}_2\text{O}^-\right] = \frac{\text{moles OH}^{-} \text{added}}{\text{total volume (dm}^3\text{)}} = 0.00875/0.08 = 0.109 \text{M}
\]

\[
\text{ka} = \frac{[H^+][\text{CH}_3\text{CO}_2\text{O}^-]}{[\text{CH}_3\text{CO}_2\text{H}]} \quad \quad \text{pH} = -\log [H^+] = -\log 3.64 \times 10^{-5} = 4.44
\]

\[
[H^+] = ka \times \frac{[\text{CH}_3\text{CO}_2\text{H}]}{[\text{CH}_3\text{CO}_2\text{O}^-]} = 1.7 \times 10^{-5} \times 0.234 / 0.109 = 3.64 \times 10^{-5}
\]
Calculating change in pH of buffer on addition of small amount of acid or alkali

If a small amount of alkali is added to a buffer then the moles of the buffer acid would reduce by the number of moles of alkali added and the moles of salt would increase by the same amount so a new calculation of pH can be done with the new values.

\[
\text{CH}_3\text{CO}_2\text{H}^{\text{aq}} + \text{OH}^- \rightarrow \text{CH}_3\text{CO}_2^- + \text{H}_2\text{O} \]

If a small amount of acid is added to a buffer then the moles of the buffer salt would reduce by the number of moles of acid added and the moles of buffer acid would increase by the same amount so a new calculation of pH can be done with the new values.

\[
\text{CH}_3\text{CO}_2^- + \text{H}^+ \rightarrow \text{CH}_3\text{CO}_2\text{H}^{\text{aq}}
\]

Example 17: 0.005 mol of NaOH is added to 500 cm³ of a buffer where the concentration of ethanoic acid is 0.200 mol dm⁻³ and the concentration of sodium ethanoate is 0.250 mol dm⁻³. \((\text{Ka} = 1.7 \times 10^{-5})\)

Calculate the pH of the buffer solution after the NaOH has been added.

Work out the moles of acid and salt in the initial buffer solution

Moles ethanoic acid = conc x vol = 0.200 x 0.500 = 0.100 mol

Moles sodium ethanoate = conc x vol = 0.250 x 0.500 = 0.125 mol

Work out the moles of acid and salt in buffer after the addition of 0.005 mol NaOH

Moles ethanoic acid = 0.100 - 0.005 = 0.095 mol

Moles sodium ethanoate = 0.125 + 0.005 = 0.130 mol

\[
\left[\text{H}^+\right] = \frac{\text{Ka} \times [\text{CH}_3\text{COOH}]}{[\text{CH}_3\text{COO}^-]}
\]

We can enter moles of acid and salt straight into the equation as they both have the same new final volume.

\[
\left[\text{H}^+\right] = \frac{1.7 \times 10^{-5} \times 0.095}{0.130} \rightarrow [\text{H}^+] = 1.24 \times 10^{-5}
\]

\[\text{pH} = \log [\text{H}^+]
\]

\[= -\log 1.24 \times 10^{-5}
\]

\[= 4.91
\]

Diluting a buffer solution

Diluting a buffer solution with water will not change its pH

This is because in buffer equation below the ratio of \([\text{HA}] / [\text{A}^-]\) will stay constant as both concentrations of salt and acid would be diluted by the same proportion.

\[
[\text{H}^+] = \text{Ka} \frac{[\text{HA}]}{[\text{A}^-]}
\]
Titration curves

Constructing a pH curve

1. Transfer 25cm³ of acid to a conical flask with a volumetric pipette
2. Measure initial pH of the acid with a pH meter
3. Add alkali in small amounts (2cm³) noting the volume added
4. Stir mixture to equalise the pH
5. Measure and record the pH to 1 d.p.
6. Repeat steps 3-5 but when approaching endpoint add in smaller volumes of alkali
7. Add until alkali in excess

Calibrate meter first by measuring known pH of a buffer solution. This is necessary because pH meters can lose accuracy on storage. Most pH probes are calibrated by putting probe in a set buffer (often pH 4) and pressing a calibration button/setting for that pH. Sometimes this is repeated with a second buffer at a different pH. Can also improve accuracy by maintaining constant temperature

Strong acid – Strong base e.g. HCl and NaOH

You may also have to work out the neutralisation volume from titration data given in the question. These are done by standard titration calculations.

The Key points to sketching a curve:
- Initial and final pH
- Volume at neutralisation
- General Shape (pH at neutralisation)

Weak acid – Strong base e.g. CH₃CO₂H and NaOH

At the start the pH rises quickly and then levels off. The flattened part is called the buffer region and is formed because a buffer solution is made

Half neutralisation volume

For weak acids

\[\text{Ka} = \frac{[H^+ \text{(aq)}][A^- \text{(aq)}]}{[HA \text{ (aq)}]} \]

At ½ the neutralisation volume the [HA] = [A⁻]

So \[\text{Ka} = [H^+] \] and \[\text{pKa} = \text{pH} \]

If we know the Ka we can then work out the pH at ½ V or vice versa.

If a pH curve is plotted then the pH of a weak acid at half neutralisation (½ V) will equal the pKa
Choosing an Indicator

Indicators can be considered as weak acids. The acid must have a different colour to its conjugate base.

An indicator changes colour from HIn to In\(^-\) over a narrow range. Different indicators change colours over different ranges.

The end-point of a titration is defined as the point when the colour of the indicator changes colour.

The end-point of a titration is reached when \([\text{HIn}] = [\text{In}^-]\). To choose a correct indicator for a titration one should pick an indicator whose end-point coincides with the equivalence point for the titration.

An indicator will work if the pH range of the indicator lies on the steep part of the titration curve. In this case the indicator will change colour rapidly and the colour change will correspond to the neutralisation point.

How indicators work

\[
\text{HIn} (\text{aq}) \rightleftharpoons \text{In}^- (\text{aq}) + \text{H}^+ (\text{aq})
\]

colour A \quad \text{colour B}

We can apply Le Chateliers to give us the colour.

In an acid solution the H\(^+\) ions present will push this equilibrium towards the reactants. Therefore colour A is the acidic colour.

In an alkaline solution the OH\(^-\) ions will react and remove H\(^+\) ions causing the equilibrium to shift to the products. Colour B is the alkaline colour.

Only use phenolphthalein in titrations with strong bases but not weak bases:

Colour change: colourless acid \(\rightarrow\) pink alkali

Use methyl orange with titrations with strong acids but not weak acids

Colour change: red acid \(\rightarrow\) yellow alkali (orange end point)