**Aromatic synthetic routes**

Conc nitric acid + conc sulfuric acid

Electrophilic substitution

Acyl chloride in the presence of anhydrous aluminium chloride catalyst

Electrophilic substitution

NaCN + H₂SO₄

Nu Add

NaBH₄

Red Nu Add

CH₂CO₂H + H₂SO₄

Heat esterification

**Synthetic Routes**

Chemists aim to design processes that do not require a solvent and that use non-hazardous starting materials. The use of solvents is generally avoided because it requires separation processes to remove products from solvent which can be both costly and will result in a loss of yield.

Chemists aim to design production methods with fewer steps that have a high percentage atom economy. The fewer the steps the better the likely yield. Processes with fewer side products will mean a higher percentage atom economy and will require fewer separating process. Less material is also wasted leading to higher sustainability.
Organic techniques

Distillation

In general used as separation technique to separate an organic product from its reacting mixture. Need to collect the distillate of the approximate boiling point range of the desired liquid.

Classic AS reaction using distillation

Reaction: primary alcohol $\rightarrow$ aldehyde
Reagent: potassium dichromate (VI) solution and dilute sulfuric acid.
Conditions: use a limited amount of dichromate and warm gently and distil out the aldehyde as it forms [This prevents further oxidation to the carboxylic acid]

$$\text{CH}_3\text{CH}_2\text{CH}_2\text{OH} + [\text{O}] \rightarrow \text{CH}_3\text{CH}_2\text{CHO} + \text{H}_2\text{O}$$

Observation
Orange dichromate solution changes to green colour of Cr$^{3+}$ ions

Reflux

Reflux is used when heating organic reaction mixtures for long periods. The condenser prevents organic vapours from escaping by condensing them back to liquids.

Never seal the end of the condenser as the build up of gas pressure could cause the apparatus to explode. This is true of any apparatus where volatile liquids are heated

Classic AS reaction using reflux

Reaction: primary alcohol $\rightarrow$ carboxylic acid
Reagent: potassium dichromate(VI) solution and dilute sulfuric acid
Conditions: use an excess of dichromate, and heat under reflux: (distil off product after the reaction has finished using distillation set up)

$$\text{CH}_3\text{CH}_2\text{CH}_2\text{OH} + 2[\text{O}] \rightarrow \text{CH}_3\text{CH}_2\text{CO}_2\text{H} + \text{H}_2\text{O}$$

Observation
Orange dichromate solution changes to green colour of Cr$^{3+}$ ions

Anti-bumping granules are added to the flask in both distillation and reflux to prevent vigorous, uneven boiling by making small bubbles form instead of large bubbles

It’s important to be able to draw and label this apparatus accurately.
- Don’t draw lines between flask and condenser.
- Don’t have top of condenser sealed
- Condenser must have outer tube for water that is sealed at top and bottom
- Condenser must have two openings for water in and out that are open

Electric heaters are often used to heat organic chemicals. This is because organic chemicals are normally highly flammable and could set on fire with a naked flame.
Fractional Distillation: In the laboratory

- Heat the flask, with a Bunsen burner or electric mantle.
- This causes vapours of all the components in the mixture to be produced.
- Vapours pass up the fractionating column.
- The vapour of the substance with the lower boiling point reaches the top of the fractionating column first.
- The thermometer should be at or below the boiling point of the most volatile substance.
- The vapours with higher boiling points condense back into the flask.
- Only the most volatile vapour passes into the condenser.
- The condenser cools the vapours and condenses to a liquid and is collected.

Measuring boiling point

Purity of liquid can be determined by measuring a boiling point. This can be done in a distillation set up or by simply boiling a tube of the sample in an heating oil bath.

Pressure should be noted as changing pressure can change the boiling point of a liquid

Measuring boiling point is not the most accurate method of identifying a substance as several substances may have the same boiling point.
### Purifying an organic liquid: Recrystallisation

<table>
<thead>
<tr>
<th>Step</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dissolve the impure compound in a <strong>minimum volume of hot</strong> (near boiling) solvent.</td>
<td>An appropriate solvent is one which will dissolve both compound and impurities when hot and one in which the compound itself does not dissolve well when cold. The minimum volume is used to obtain saturated solution and to enable crystallisation on cooling.</td>
</tr>
<tr>
<td>2. <strong>Hot filter</strong> solution through (fluted) filter paper quickly.</td>
<td>This step will remove any insoluble impurities and heat will prevent crystals reforming during filtration.</td>
</tr>
<tr>
<td>3. <strong>Cool</strong> the filtered solution by inserting beaker in ice</td>
<td>Crystals will reform but soluble impurities will remain in solution form because they are present in small quantities so solution is not saturated. Ice will increase the yield of crystals.</td>
</tr>
<tr>
<td>4. <strong>Suction filtrate</strong> with a Buchner flask to separate out crystals</td>
<td>The water pump connected to the Buchner flask reduces the pressure and speeds up the filtration.</td>
</tr>
<tr>
<td>5 Wash the crystals with distilled water</td>
<td>To remove soluble impurities</td>
</tr>
<tr>
<td>6. Dry the crystals between absorbent paper</td>
<td></td>
</tr>
</tbody>
</table>

**Loss of yield in this process**
- Crystals lost when filtering or washing
- Some product stays in solution after recrystallisation
- Other side reactions occurring

If the crystals are not dried properly the mass will be larger than expected which can lead to a percentage yield >100%
Measuring melting point

One way of testing for the degree of purity is to determine the melting "point", or melting range, of the sample.

If the sample is very pure then the melting point will be a sharp one, at the same value as quoted in data books.

If impurities are present (and this can include solvent from the recrystallisation process) the melting point will be lowered and the sample will melt over a range of several degrees Celsius.

Comparing an experimentally determined melting point value with one quoted in a data source will verify the degree of purity.

Sometimes an error may occur if the temperature on the thermometer is not the same as the temperature in the actual sample tube.
## Testing for Organic Functional Groups

<table>
<thead>
<tr>
<th>Functional group</th>
<th>Reagent</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkene</td>
<td>Bromine water</td>
<td>Orange colour decolourises</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>Fehling’s solution</td>
<td>Blue solution to red precipitate</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>Tollen’s reagent</td>
<td>Silver mirror formed</td>
</tr>
<tr>
<td>Carboxylic acid</td>
<td>Sodium carbonate</td>
<td>Effervescence of CO₂ evolved</td>
</tr>
<tr>
<td>1° 2° alcohol and aldehyde</td>
<td>Sodium dichromate and sulfuric acid</td>
<td>Orange to green colour change</td>
</tr>
<tr>
<td>Chloroalkane</td>
<td>Warm with silver nitrate</td>
<td>Slow formation of white precipitate of AgCl</td>
</tr>
<tr>
<td>Acyl chloride</td>
<td>Silver nitrate</td>
<td>Vigorous reaction- steamy fumes of HCl - rapid white precipitate of AgCl</td>
</tr>
</tbody>
</table>

### Tollen’s Reagent

**Reagent:** Tollen’s reagent formed by mixing aqueous ammonia and silver nitrate. The active substance is the complex ion of \([\text{Ag(NH}_3\text{)}_2]^+\).

**Conditions:** heat gently

**Reaction:** aldehydes only are oxidised by Tollen’s reagent into a carboxylic acid and the silver(I) ions are reduced to silver atoms.

**Observation:** with aldehydes, a silver mirror forms coating the inside of the test tube. Ketones result in no change.

\[
\text{CH}_3\text{CHO} + 2\text{Ag}^+ + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{COOH} + 2\text{Ag} + 2\text{H}^+ 
\]

### Fehling’s solution

**Reagent:** Fehling’s solution containing blue Cu²⁺ ions.

**Conditions:** heat gently

**Reaction:** aldehydes only are oxidised by Fehling’s solution into a carboxylic acid and the copper ions are reduced to copper(I) oxide.

**Observation:** Aldehydes: Blue Cu²⁺ ions in solution change to a red precipitate of Cu₂O. Ketones do not react.

\[
\text{CH}_3\text{CHO} + 2\text{Cu}^{2+} + 2\text{H}_2\text{O} \rightarrow \text{CH}_3\text{COOH} + \text{Cu}_2\text{O} + 4\text{H}^+ 
\]

The presence of a carboxylic acid can be tested by addition of sodium carbonate. It will fizz and produce carbon dioxide.

\[
2\text{CH}_3\text{CO}_2\text{H} + \text{Na}_2\text{CO}_3 \rightarrow 2\text{CH}_3\text{CO}_2\text{Na}^+ + \text{H}_2\text{O} + \text{CO}_2
\]