Solid Crystals

There are 4 types of solid crystal:
1. Ionic Crystals
2. Metallic Crystals
3. Molecular Crystals
4. Macromolecular crystals

X-ray diffraction

X-ray diffraction provides information about the arrangement of atoms or ions in a crystal and the distances between them.

X-rays are electromagnetic radiation with wavelength of the same order of magnitude as the distance between atoms/ions in a crystal (approx. 10^{-10}m). For this reason a crystal will produce a diffraction pattern when bombarded with X-rays.

The diffraction pattern is then fed into a computer which calculates the distance between atoms/ions and bond angles. An electron density map may be plotted. These maps join points of equal electron density by contours and so give a pattern which represents the structure of the substance:

Bond lengths, bond angles and variation in electron density in the substance can be worked out from these maps.

Limitations of X-ray diffraction
a) Atoms of low Relative atomic mass are difficult to detect because it is the electrons in the atoms/ions which affect X-rays.
b) Only solids can be analysed in form of crystals or powders.

Metallic Crystals

The metal cations are held in place by a sea of delocalised electrons. The cations are packed as closely as possible.

Typical properties of metals

- High melting points (metallic bonding is a strong type of bonding)
- Malleable
- Conductors of electricity (the delocalised electrons will flow when a potential difference is applied across it)
- Shiny (due to delocalised electrons causing light to be reflected)

Metals are malleable because the positive ions in the lattice are all identical. So the planes of ions can slide easily over one another. The attractive forces in the lattice are the same whichever ions are adjacent.
Metallic Lattices

Some of the simplest crystal structures are those of metals where all particles are identical. There are three major types of metallic lattice. Two of these involve the close packing of particles; the third involves cubic packing of particles:

Almost all metals crystallise in one or more of these systems. The close packed structures account for about 50 metals; cubic packing accounts for about 20 metals.

There is no obvious relationship between structural type and position in the periodic table.

In the both close packed arrangements a given sphere has 12 other spheres in contact with it. It is said to have 12 co-ordination or a co-ordination number of 12.

Hexagonal Close Packing (HCP)

In hexagonal close packing the metal ions are arranged in layers. The second layer (B) sits in the holes above the first layer (A). The pattern continues ABABAB

Mg, Zn, Cd all have HCP structures

The **unit-cell representation** is defined as the simplest repeating unit of the lattice which displays the full symmetry of the crystal.

This is unit-cell representation for hexagonal close packing
In body centred packing each sphere is in contact with 8 others and is said to have 8 co-ordination or a co-ordination number of 8.

Examples: Group1 metals many transition metals

In cubic close packing the layer are arranged differently from hexagonal close packing. The second layer (B) sits in the holes above the first layer (A) in the same way but the third layer does not sit above the first. The third layer is displaced over and is called layer (C). The pattern continues ABCABCABC

This is unit-cell representation for cubic close packing. This packing is also called face centred cubic packing. You can see there are particles at the centre of each face of the unit cell.

Cu, Ag, Au, Al, Pb all have CCP packing
Octahedral and Tetrahedral holes

In close cubic arrangements, in both the BCC and HCP arrangements, there are holes between neighbouring atoms/ions. There are two types of holes (or sites): octahedral and tetrahedral.

A tetrahedral site exists when 3 atoms from one layer touch each other. The centres of these three atoms, together with the centre of the atom in the next layer which touches all three form the corners of a tetrahedron. At the centre of this tetrahedron is a space known as a tetrahedral site.

A tetrahedral site appears in a lattice at a ratio of two per atom.

It is also possible to describe the octahedral site existing because 4 atoms in a layer in the lattice touch each other. The centres of these 4 atoms, together with the centres of the atoms above and below the layer form the corners of an octahedron. (You have to look at an angle to see the layer of 4) At the centre of this octahedron is a space known as an octahedral site.

Octahedral sites are larger than tetrahedral sites.

An octahedral site appears in a lattice at a ratio of one per atom.

Ionic Crystal Lattices

Ionic lattices are variations of the metal lattice structures. If a close packed metal lattice structure is adopted by one type of ion and some or all the tetrahedral or octahedral sites are occupied by ions of opposite charge, an ionic lattice is formed.

In a sodium chloride lattice, the chloride ions are arranged a cubic close packed (BCC) arrangement and the sodium ions occupy the octahedral sites between the chloride ions.

Coordination no of Na⁺ = 6
Coordination no of Cl⁻ = 6 Type of structure = 6:6

Ionic bonding is between ions and all their surrounding oppositely charged ions. Each sodium ion in this structure is surrounded and equally attracted by six chloride ions. The ionic bond is the attraction between all these ions.
An Ionic bond is the electrostatic force of attraction between oppositely charged ions in a lattice.

Electron density maps obtained through X-ray diffraction also give evidence for the existence of ions and also the structure of ionic substances. These maps show the likelihood of finding electrons in a region. The contours are lines of equal electron density, with greater electron densities being on contours closer to the nucleus. The maps show that for NaCl:

- The ions are arranged in a regular pattern.
- The chloride ions are larger than the sodium ions.

The ions in an ionic solid are arranged in a regular 3D pattern called a giant ionic lattice.

Not all ionic substances have the same arrangement of ions in their lattices.
Zinc Blende

Zinc Blende has another arrangement of ions.

Sulphide ions form a BCC lattice and the zinc ions occupy half the tetrahedral sites between the sulphide ions. It is a similar structure to the diamond structure.

Caesium chloride

The electron density map of caesium chloride shows a different arrangement of the ions.

Chloride ions form the corners of a cube. Caesium ions form the corners of another cube. The cubes penetrate each other so that e.g. Cs⁺ ions are at the centres of e.g. Cl⁻ ion cube

Coordination no of Cs⁺ = 8
Coordination no of Cl⁻ = 8
Type of structure = 8:8
Carbon Allotropes

Carbon can form macromolecular compounds because it can form 4 covalent bonds, whereas iodine can only form one bond so only forms simple molecules

Macromolecular: diamond

The covalent bonds that join the atoms are very strong. This makes diamond very hard, with a high melting point.

Diamond cannot conduct electricity because all 4 electrons per carbon atoms are involved in covalent bonds. They are localised and cannot move.

Macromolecular: Graphite

Graphite has a planar arrangement of carbon atoms in layers. There are 3 covalent bonds per atom in each layer. The 4th outer shell electron per atom is delocalised. The delocalised electrons are between the layers.

The layers have weak intermolecular forces between them. This means that the layers can easily slide over each other, and graphite therefore has a lubricating action (and is soft).

Graphite can conduct electricity well between layers because one electron per carbon is free and delocalised, so electrons can move easily along layers.

It does not conduct electricity between layers because the energy gap between layers is too large for easy electron transfer.

Both these macromolecular structures have very high melting points because of strong covalent forces in the giant structure. It takes a lot of energy to break the many strong covalent bonds.
Carbon nanotubes

These have very high tensile strength because of the strong structure of many strong covalent bonds.

Nanotubes can conduct electricity well along the tube because one electron per carbon is free and delocalised, so electrons can move easily along the tube.

Nanotubes have potentially many uses. One being the potential to us as vehicles to deliver drugs to cells.

Graphene

Graphene is a new substance that is a one layer of graphite i.e. 3 covalent bonds per atom and the 4th outer electron per atom is delocalised.

These have very high tensile strength because of the strong structure of many strong covalent bonds.

Graphene can conduct electricity well along the structure because one electron per carbon is free and delocalised, so electrons can move easily along the structure.

buckminsterfullerene

There are delocalized electrons in buckminsterfullerene, which is a molecule of C₆₀.

Macromolecular Silicon Dioxide

It has a high melting point. The very strong silicon-oxygen covalent bonds have to be broken throughout the structure before melting occurs.

It is hard. This is due to the very strong covalent bonds.

It does not conduct electricity. There are not any delocalised electrons. All the electrons are held tightly between the atoms.

It is insoluble in water and organic solvents. There are no possible attractions which could occur between solvent molecules and the silicon or oxygen atoms which could overcome the covalent bonds in the giant structure.
Molecular: Iodine

The crystals contain a regular arrangement of I₂ molecules held together by weak van der waals intermolecular forces.

Properties of molecular crystals:
- Low melting and boiling points because the van der waals forces are weak.
- Non conductor of electricity in any state because no charged particles are present.
- Low solubility in water because iodine cannot form strong forces (hydrogen bonds) with water.

In ice, the hydrogen bonds hold the water molecules together in a regular structure.

Molecular: Ice

This is a difficult diagram to draw.

The main point to show is a central water molecule with two ordinary covalent bonds and two hydrogen bonds in a tetrahedral arrangement.

The molecules are held further apart than in liquid water and this explains the lower density of ice.